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CHAPTER 1. GENERAL INTRODUCTION 

Statement of the Problems 

P pollution from livestock speeds up eutrophication 

Eutrophication is a natural process by which lakes eventually become land. Unfortunately 

this process can be speeded up by certain actions associated with intensive animal 

production. More than 500 million tons of animal manure are added to our environment 

every year. It often contains high amounts of phosphorus (P) because animals do not 

efficiently use the organically bound phosphorus in their feed. In areas of intensive livestock 

production, large amounts of P from animal waste can saturate the soil beyond the P levels 

required for high crop yields. The excessive P can then dissolve in groundwater and surface 

water, and eventually, flow to the lakes, rivers, and oceans. In water, high P concentration 

stimulates water plants to grow rapidly. When these plants die and are decomposed by 

bacteria, the oxygen is consumed in the process. Aquatic creatures, especially fish, are 

suffocated by the low oxygen content of the water. If the high P content in animal feces 

could be decreased, we could decrease the amount of P flowing into the environment and the 

eutrophication process could be slowed. 

Much of the P in grains such as soybeans and corn is bound to an organic compound called 

phytic acid, which renders it unavailable for absorption. Phytate P can only be absorbed 

when the phosphoester bonds are hydrolyzed. Unfortunately, there is little phytase activity in 

the intestinal tracts of birds and swine, which results in large amount of undigested 

phosphorus in manure. Ruminants can digest 98% of the phytate-P in their feed as a result of 

microbial production of phytase in their rumen. However, in dairy cows the gastrointestinal 

motility is increased during lactation due to high feed intake. As a result, the retention time 

for nutrients in the rumen is shortened and phytate may not be completely broken down. The 

result is decreased P absorption. In addition, dairy and beef cattle farmers are prone to add 

supplemental inorganic P at higher than the NRC requirements in the mistaken belief that 
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they will observe improved growth performance and milk production. This practice also 

contributes to the high P in ruminant manure. 

It is known that vitamin D is the hormone that controls the active transport of P in the small 

intestine. In several of these studies, we are trying to use Solatium glaucophyllum, a plant 

containing glycosides of l,25(OH)2D3 in its leaves, as an inexpensive source of l,25(OH)2D3 

to improve P utilization in birds and dairy cattle, and, thus decrease P excretion in animal 

manure. 

Lack of an appropriate treatment for hypophosphatemia in cattle 

Most cows experience hypocalcemia and hypophosphatemia at parturition. Milk fever 

develops when cows are not able to remove bone calcium sufficiently to compensate for 

calcium lost to milk production. From 3 to 28% of milk fever cows do not respond to 

calcium therapy and remain recumbent; some because of failure to correct low plasma P. In 

the United States, the treatment used in milk fever cows is also used to "treat" 

hypophosphatemia. The commercial product contains calcium gluconate, magnesium and 

phosphites (P03
3 ) and phosphinates (P02

3). Unfortunately, the body only uses phosphate 

(P04 
1 ) rather than phosphite. The commercial products are not useful as a phosphate 

supply for hypophosphatemic cows. If low plasma P is not corrected and the cow stays in 

recumbency for more than 48 hours, permanent nerve and muscle damage result. Hence, an 

appropriate treatment should be developed for hypophosphatemia to prevent further damage 

from recumbence in dairy cattle. 

We conducted an experiment to demonstrate that phosphate solutions, especially sodium 

phosphate based solutions, could be successfully used as a treatment for hypophosphatemia. 

Dissertation Organization 

This dissertation is composed of a literature review and three manuscripts. The first chapter 

includes a general review relating the similarities and differences of P homeostasis between 
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mammals and ruminants, followed by an introduction of the calcinogenic plant Solatium 

glaucophyllum. The second chapter presents a manuscript that offers an appropriate 

treatment for hypophosphatemic cattle. It has been published in the Journal of Veterinary-

Medicine. The manuscripts in chapters 3 and 4 are studies of the application of a 

calcinogenic plant, Solanm glaucophyllum, as a cheap source of l,25(OH)2D3 to improve P 

utilization in chickens and dairy cattle. They have been prepared for submission for the 

Journal of Poultry Science (chapter 3) and the Journal of Dairy Science (chapter 4). A 

general conclusion will be made in chapter 5 including the recommendation for future 

research. References cited in literature review and manuscripts are included at the end of 

each chapter. 

Literature Review 

Phosphorus (P) utilization in domestic animals is dependent on the dietary P bioavailability 

and the P homeostasis mechanisms active in the individual animal. Therefore the literature 

review includes the following parts: the bioavailibility of dietary P and the homeostasis of P 

in animals. 

The bioavailability of dietary P 

Animal feeds contain organic I y bound and free P. The organic compound binding P in 

grain legumes, oil-bearing plants and seeds (corns and soybean) is phytate, a six-carbon ring 

capable of binding six phosphate groups. At physiological pH (7.4) it has either one or two 

negatively charged oxygen atoms (Figure 1). The concentration of phytate P in feedstuffs 

depends on the part of the plant from which it is derived. In seeds and grains, phytate P is as 

high as 70% of total P whereas in non-storage organs of plant such as leaves it is almost zero 

(Sebastian et al. 1998). Phytate P can be dephosphorylated to less phosphorylated forms of 

inositol and finally to inositol by meso-inositol hexaphosphate phosphorydrolase (phytase), 
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Figure 1. Myo-inositol hexaphosphoric acid 
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intestinal alkaline phosphate (ALP), and acid phosphatase (Reddy et al. 1982; Sandberg 

and Andersson 1988). 

A. Phytate-P digestion in animals 

In vivo tests showed the intestinal brush border contains phytase and in chicks the enzyme 

activity is highest in the duodenum and decreases progressively down the length of the gut 

(Maenz and Classen 1998). Though they are present, the small intestine mucosal phytase and 

ALP do not play important roles in phytate hydrolysis (Davies et al. 1970; Bitar and 

Reinhold 1972; Davies and Motzok 1972; Davies and Motzok 1972). The ability to digest 

and utilize phytate-P in poultry ranges from zero to 50% (Nelson 1976; Edwards 1983; 

Mohammed and Gibney 1991). It is estimated that 0 to 10% of phytate P can be used by 

broilers and turkeys, and up to 50% by laying hens. In swine, phytate P utilization is 10-

40%. Therefore, from a practical point of view, increasing phytate dephosphorylation in 

monogastric animals will rely on addition of exogenous phytase derived from either plants or 

fungi to the diet. In ruminants, the rumen microbes produce enough phytase to break down 

the phytate bonds in the feedstuff which results in 90 to 98% phytate P digestion (Morse and 

Head 1991). 

B. Factors influence intestinal phytate-P digestion 

High dietary Ca or Ca:P ratio (>2) results in the formation of insoluble calcium-phytate P 

precipitates in the intestine (Nelson 1967). Data from chick experiments demonstrated that 

widening the Ca:P ratio from 1:1 to 2:1 decreased the availability of P from phytate (Qian et 

al. 1997). Supplemental vitamin D3 and its metabolites increase phytate-P utilization, though 

the mechanism was not clear (Steenbock et al. 1953; Mohammed and Gibney 1991; Edwards 

1993; Biehl et al. 1995; Edwards 1995; Mitchell and Edwards 1996; Biehl and Baker 1997; 

Biehl et al. 1998). It is possible that the vitamin D metabolites improve Ca absorption, which 

allows the phytate bound P complex to be more soluble, and therefore more available for 

phytase hydrolysis (Wasserman and Taylor 1973; Tanaka and Deluca 1974; Mohammed and 
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Gibney 1991). Some research suggested that vitamin D might directly increase synthesis 

or activity of intestinal phytase in chicks and rats (Fontaine et al. 1985; Shafey et al. 1991). 

In birds and swine, adults produce more intestinal phytase than young animals (Edwards, 

1989) (Nelson 1976). The retention time of phytate-P in the gastrointestinal tract also 

influences phytate-P utilization. Edwards (1983) reported that the passage of digesta was 

slower and phytate P digestion more completely in the small intestine of leghorn chickens 

than in meat-type broilers (Edwards 1983). 

C. Inorganic P in feeds 

The major sources of free inorganic phosphorus in animal diets are supplemental minerals 

and animal byproducts. One group is the mono and di-calcium phosphates produced by 

reacting phosphoric acid with limestone. The concentration of limestone determines the 

amount of phosphate in the mixture. The other group is defluorinated phosphates produced 

by reacting phosphate rock with phosphoric acid and sodium carbonate, which then 

undergoes calcining at 1250°C. The biological value of the commercial defluorinated 

phosphates is variable due to difficulties in controlling the synthetic process (Waldroup 

1999). 

Bioassays for the dietary inorganic P availability usually relate the availability of a P source 

by comparing growth or bone parameters to those observed using reagent grade dicalcium 

phosphate as a standard, which is, assigned an availability of 100. The range of P 

bioavailability is large even when tested in the same species. In poultry, the order and ranges 

of bioavailability for the commercial phosphates are monocalcium phosphates (range 88.6-

110), dicalcium phosphates (76.3-104) and defluorinated phosphates (68.6-89.6) (Waibel et 

al. 1984; Potchanakom and Potter 1987; Potter 1988; Nelson et al. 1990). These large ranges 

for the availability of P sources, and the variation inherent during feed mixing may often lead 

to excessive P excretion or deficiency of P in rapidly growing birds (Waibel et al. 1984; 

Waldroup 1999). In ruminants and swine, the order of supplemental inorganic phosphates 

bioavailability is similar to that in poultry (Traylor and Cromwell 1998; NRC, 1998). 

Mono/dicalcium phosphates are more available than defluorinated phosphates and animal 
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byproducts. However in calves, Miller et al.( 1987) reported no significant differences in 

the availability of defluorinated phosphates and dicalcium phosphates (Miller et al. 1987). 

Animal derived supplements such as meat and bone meal contain highly available P. In 

poultry, the availability from bone meal was similar to that of supplemental inorganic 

dicalcium phosphate (Sullivan et al. 1994; Sell and Jeffrey 1996). However, the P content in 

the animal byproducts can range from 1.8 to 7.0%, which also contributes to the possibility 

of overestimation or underestimation of P supply (Shutze and Benoff 1981; Waldroup 1999). 

P homeostasis in domestic animals 

Phosphorus homeostasis differs among monogastric animals and ruminants. In poultry and 

swine, P homeostasis is controlled by intestinal absorption and the kidney excretes excess P 

under the regulation of parathyroid hormone (PTH) and calcitriol. In ruminants, the 

excessive P in plasma is excreted by the salivary glands and the role of kidney in P excretion 

becomes minor. The major route of P excretion is through the gastrointestinal tract. 

A. The physiological roles of Phosphorus (P) 

Phosphorus is an essential mineral for animal growth and reproduction. Most P (85%) is 

stored in the skeleton in the form of hydroxyapatite with Ca. The rest (15%) is present in cell 

cytosol, cell membrane, and body fluid. The organic form of P is primarily present as 

phospholipid in cell membranes and as an energy-carrying molecule, adenosine triphosphate 

(ATP), in cells. Less than 1% of total body P is in blood. A large amount of blood P is 

within the RBC as 2-3-diphosphoglyceric acid. This compound involves the binding of 

oxygen to hemoglobin. The total P in blood is about 14mg/dl. However only 4-6mg/dl is in 

the form of inorganic phosphates. The inorganic phosphates in serum exist as phosphate 

salts with Ca, Mg and Na or as dibasic (HP04
2- ) and monobasic (H2P04 ) ions. Serum 

phosphates serves as a buffer system for the maintenance of acid/base balance. In clinical 

medicine, serum inorganic phosphate is also measured for diagnostic and therapeutic 
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reference. Young animals have higher P concentrations due to the effect of growth 

hormone which increases renal P reabsorption. 

In addition to plasma P, serum alkaline phosphatase (ALP), renal clearance of Pi and 

radiographic analysis of skeleton mineralization are usually used as indices of P status 

(Avioli and Krane 1998). 

B. Gastrointestinal phosphorus absorption 

General mechanisms of Pi absorption 

Intestinal inorganic phosphate (Pi) absorption occurs in 3 steps; a) Pi crosses the lumen 

brush-border membrane and enters the enterocyte; b) intracellular Pi is transported from the 

lumen side to the basolateral side of the cytosol; and c) Pi is transported across the 

basolateral membrane into the blood (Murer and Hildmann 1981). 

Both active and passive transport mechanisms allow Pi to cross the brush border membrane. 

The active transport system, mainly found in the jejunum, is a Na/P protein carrier. The 

active mechanism is vitamin Independent. The driving force depends on the Na gradient, 

since the lumenal concentration of Na is usually about ten times higher than the intracellular 

concentration. The Na gradient is maintained by the Na/K ATPase located within the 

basolateral membrane (Peterlik and Wasserman 1978) (Cross et al. 1990; Danisi et al. 1990) 

(Ghishan and Kikuchi 1987) (Schroder et ai. 1995). Passive absorption across the brush 

border is driven by a chemical gradient against an electrical gradient. The intracellular 

electric potential is negative relative to the lumen side. Therefore, the less negative 

monovalent anion H2P04" diffuses across the brush border membrane more readily than 

HP04
2\ Since an acidic environment promotes H2P04~ formation, the duodenum is the major 

site of passive P absorption due to its relative acidic environment. The more negative HP04
2' 

is absorbed primarily via active transport whereas the H2P04" mostly through paracellular 

absorption (Danisi et al. 1984; Cross et al. 1990). 

Little is known about the intracellular migration of Pi across the cell. It is believed that 

microfilament system might be involved in intracellular Pi migration, because this process 
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can be blocked by drugs (such as cytochalasin B) that disrupt the microfilament network 

(Fuchs and Peterlik 1979). A specific carrier protein synthesized in response to Vitamin D 

receptor activation was also proposed to play a role (DeLuca 1988). However, no specific 

vitamin D-dependent cytosolic Pi carrier protein has yet been isolated. 

The mechanism of Pi transport across the basolateral membrane is not well defined. Danisi 

et al. ( 1984) reported the presence of a Na-independent carrier driven by the electrical 

gradient (Danisi et al. 1984), whereas Ghishan et al. (1987) demonstrated a Na-dependent Pi 

transport system that is vitamin D-dependent and that operates under electroneutral condition 

in basolateral membrane vesicles isolated from rat jejunum (Ghishan and Kikuchi 1987; 

Ghishan 1992). 

Paracellular diffusion is the mechanism of Pi absorption from the large intestine (mainly in 

the colon). The process is triggered by high P concentration in the lumen (Barlet et al. 1995). 

An in vitro study in rat colon showed passive diffusion of Pi, which was not associated with 

the effect of l,25(OH)2D3 (Lee et al. 1990). Some human medical therapies involve 

administration of Pi via the rectum as enemas. The phosphate clearly is absorbed but the rate 

of absorption is variable and there is a risk of developing severe hyperphosphatemia. 

Pi absorption in ruminants 

In ruminants, the small intestine is the major site of Pi absorption, though small amounts of 

Pi can pass through the wall of the rumen (Breves and Schroder 1991; Schroder et al. 1995). 

In the fore-stomach, the passive diffusion of Pi was demonstrated in bovine omasum and 

sheep reticulo-rumen. The electrochemical gradient across the lumen and mucosal sides 

drives Pi across the epithelial cell (Breves et al. 1988). But the quantity of Pi absorbed from 

the fore-stomach and the overall importance of this portion to total Pi absorption in 

gastrointestinal tract is not clear. 

Studies on small intestinal Pi transport have been done mostly in sheep and goats. It is 

known that plasma l,25(OH)2D3 is not changed in response to P depletion (Schroder et al. 

1990) (Breves et al. 1985). However, a low Ca diet stimulates l,25(OH)2D3 formation and 

increases both Ca and P absorption (Abdel-Hafeez et al. 1982). Shirazi-Beechy et al. (1991) 

reported enhancement of a pH- but not Na-dependent Pi absorption in the brush-border 
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membrane, with no change in plasma l,25(OH)2D3 concentration (Shirazi-Beechey et al. 

1991). Schroder et al. (1995), however, demonstrated that a Na-dependent Pi transport in 

sheep jejunum mediated 65% of active P absorption (Schroder et al. 1995). In an in vitro 

study of brush-border membrane vesicles isolated from goat jejunum, Schroder et al. further 

found Na-dependent Pi transport in goats fed a normal diet. The kinetic parameters of the 

transport system, Km and V^, were not changed by long-term P depletion, but V^was 

increased when plasma 1,25(QH)2D3 was increased by low dietary Ca. This Na-dependent Pi 

transport mechanism was also enhanced when the medium pH was decreased to 5.4, although 

no such proton-gradient effect on Pi transport was observed when Na was absent. This 

suggests that Pi transport in goat jejunum is Na- and calcitrol-dependent and can be 

stimulated by protons (Schroder and Breves 1996). 

Factors affecting intestinal Pi absorption 

a. Dietary Pi concentration 

The effect of dietary P concentration on Pi absorption is mediated by l,25(OH)2D3. Low P 

diet results in low plasma Pi, which in turn stimulates the activity of 1 «-hydroxylase in the 

kidneys and thus increases 1.25(OH)2D3 production (Gray 1981). l,25(OH)2D3 increases Pi 

absorption by increasing intestinal Na/P cotransporter synthesis and the of the Na/P 

cotransporter (Danisi et al. 1988). However, this ability to adapt to Pi deprivation is reduced 

in older animals (Lee et al. 1986). 

The effect of low P diet in ruminants is vitamin D independent; plasma l,25(OH)2D3 was 

not increased even when intestinal Pi absorption was increased (Schroder et al. 1995). 

Nevertheless, increasing plasma l,25(OH)2D3 by dietary Ca restriction increased active P 

absorption (Abdel-Hafeez et al. 1982). 

b. Dietary Ca:P ratio 

Intestinal absorption of Pi is influenced by Pi solubility, and the dietary Ca:P ratio changes 

Pi solubility. This relationship between dietary Ca and P results from chemical association 

of Ca and Pi in the intestinal lumen rather than from the interaction of the two ions at the 
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absorption site (Hurwitz and Bar 1971). In monogastric animals, dietary Ca:P ratio 

between 1 and 2 are assumed to be ideal for growth and bone formation (Underwood 

1981). Solubility of Pi decreased as the Ca:P ratio increased (Rao et al. 1995) because of the 

formation of calcium phosphate precipitates. Ruminants can tolerate wide range of Ca:P 

ratios from 1 to 7 without affecting the absorption of either Ca or Pi (Underwood 1981). One 

possible explanation is that Ca and P are more soluble in acidic environments. The pH in the 

upper small intestine is lower in ruminants than in monogastric animals, and this lower pH 

decreases the calcium phosphate precipitates and thus increases Ca and P availability. 

c. Citric acid 

Supplemental citric acid improves absorption of both Ca and P in the small intestine of rats 

and chicks (Boling et al. 1998). The mechanism is not clear. It may involve changes in 

intestinal pH, Ca solubility, or tight junction integrity. Soluble calcium citrate will be formed 

when citric acid is present in the distal intestine. Citrate may also decrease intestinal pH, 

increasing the solubility of Pi and thus making more Pi available for absorption. The citrate 

may disrupt the light junction integrity of the epithelium barrier of the intestinal wall so that 

more cation:* pass through via the paracellular pathway. 

d. Intestinal phytase and phytate-cation complex 

Monogastric animals have little phytase activity and thus little ability to digest phytate P, 

although there is disagreement on whether phytase activity is due to or associated with 

alkaline phosphatase (ALP) in mammalian and avian intestine (Bitar and Reinhold 1972). 

Intestinal phytase may be an isoenzyme of ALP, as suggested by the fact that both enzyme 

activities are increased by phosphorus deficiency and vitamin D3 supplements. Davies et al. 

(1970), however, demonstrated that the activities of ALP and of phytase in chick intestinal 

mucosa were not influenced to the same degree by the factors already mentioned. When 

dietary P was adequate, the activity of intestinal phytase, but not of ALP, was increased when 

levels of vitamin D, were increased (Davies et al. 1970). Nevertheless, it is clear that the 

alkaline phosphatase protein isolated from bovine intestinal mucosa has phytase activity 

(Williams et al. 1985). 
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The presence of phytate-P has negative impacts on mineral bioavailibility (Sebastian et al. 

1998). The phosphate groups on the phytic acid carbon ring have a strong tendency to 

form chelates with di- and tri valent cations (Figure 2). The stability of phytate-cation 

complexes varies with the identity of the cation: Zn > Cu > Co > Mn > Ca at physiological 

pH. Therefore, Zn may become a limiting mineral in high phytate diets. Furthermore, the 

formation of these cation complexes reduces the availability of the phytate P itself. The 

degree of phosphorylation of inositol alters the degree of inhibition of phytate-P availability. 

At higher rates of phosphorylation (Inp5 or Inp6 phosphates), absorption of calcium, zinc and 

iron was significantly inhibited, whereas no effect was observed at lesser degrees of inositol 

phosphorylation (Lonnerdal et al. 1989; Skoglund et al. 1999). The higher availability of 

phytate P in fermented feeds is due to the breakdown of inositol phosphates to less saturation 

with phosphates. 

C. Renal phosphate excretion and reabsorption 

In monogastric animals, kidneys maintain the plasma Pi concentration in the normal range. 

Almost 95% plasma Pi is filtered by the glomerulus. The renal Pi excretion is determined by 

the difference between free glomerular filtration and tubular reabsorption. The tubular 

transport maximum (Tm) for active Pi reabsorption is O.lmmole/min and that tubular load is 

reached at a serum Pi level of about 2.5mg/dl. Therefore, almost 80% of filtered Pi is 

reabsorbed. Renal tubular reabsorption occurs primarily in proximal tubules though a small 

portion of filtered P is reabsorbed in the distal tubule(Amiel, Kuntziger et al. 1970; Lassiter 

and Colindres 1982). When plasma Pi concentrations increase, the filtered Pi and the 

capacity to reabsorb Pi also increases until reaching the maximal rate of transport (Tm) 

(Knox et al. 1977). Pi excretion is increased linearly when plasma Pi concentration is above 

Tm. 

During renal failure, Pi excretion per nephron is also increased (Slatopolsky et al. 1966; 

Slatopolsky et al. 1968). Therefore the plasma Pi concentration can be maintained in the 

normal range though the number of functional nephrons might be decreased. 
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Hyperphosphatemia would not occur unless the glomeruler filtration rate (GFR) is 

decreased significantly. 

Cellular mechanism of Pi reabsorption 

The cellular mechanisms have been studied in many species in vivo and in vitro. A 

secondary active transport system known as the Na-Pi co-transporters are demonstrated to 

play the key role in P reabsorption. Three distinctive families of transporters are identified 

and named as type I, type II, and type III Na-Pi cotransporters (Murer et al. 1991; Murer and 

Biber 1995; Takeda et al. 1999; Murer et al. 2000). Type I Na-Pi cotransporter was first 

found in rabbit kidney cortex. The transporter is located in the brush-border membrane. It is 

not pH-dependent and it serves as an anion channel for chloride and various organic anions 

(Busch et al. 1996; Broeret al. 1998). Therefore, type I transporter is more like an anion 

channel protein rather than a P transporter. The predominant Pi uptake system in the kidneys 

is type 11 (a and b) Na/P cotransporters. Type Ha transporter is found mainly in the proximal 

tubular apical membrane in rat, mouse, human, rabbit and sheep. Its activity is increased 

with increasing membrane pH. Type Ha cotransporter is also expressed in osteoclasts, 

indicating its role in bone resorption (Gupta et al. 1996; Gupta et al. 1997). Type lib 

transporter i> the major Pi transporter in the kidney of chicks and carp. The aging process 

decrea>e> the expression of this cotransporter and impairs the ability of an individual to adapt 

to low P diet (Sorribas et al. 1996). The mRNA expression of type III Na-Pi cotransporter 

has been identified in kidney, parathyroid gland and bone (Tenenhouse 1997; Tatsumi et al. 

1998; Tatsumi et al. 1998). Its exact role is not clear. 

In ruminants, kidneys play a minor role in P excretion because the tubular reabsorptive 

capacity is high during physiological conditions (Potthast et al. 1976). A single type II Na/Pi 

cotransporter is dominant in brush border membrane vesicles isolated from renal cortex. 

Compared with swine, the Na-dependent P transporter has higher and Km (Schroder et 

al. 2000). Furthermore, the plasma Pi concentration that reaches the maximal tubular 

reabsorptive rate (Tm) is 3 to 4 times above the normal physiological range, which explains 

that 99% filtered Pi is reabsorbed (Widiyono et al. 1998). Nevertheless, when the maximal 
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tubular reabsorptive rate is reached the renal P excretion would become significant (Liang 

et al. 1982: Liang et al. 1982; Sacktor et al. 1982). 

Factors influencing P reabsorption 

The rate-limiting step for regulation of renal Pi reabsorption is the Pi uptake from the brush-

border membrane. Therefore, factors changing the activity or synthesis of type II Na-Pi 

cotransporter influence P reabsorption and excretion. Dietary P concentration has direct 

effect on the type II Na-Pi contransporter whereas PTH, l,25(OH)2D3 and calcitonin is the 

classical Pi regulating hormones. The role of PTH, l,25(OH)2D3 and calcitonin in renal Pi 

reabsorption will be included in the hormone regulation section. 

a. Dietary P concentration 

Low P diet directly increases renal P reabsorption rate independent of the P regulating 

hormones; PTH, calcitonin and l,25(OH)2D3 (Portale et al. 1987). It is believed that the 

adaptation to P supply is occurring at the brush border membrane Na/P cotransporter (Biber 

and Murer 1985). Western blots and immunohistochemistry demonstrate that an increase in 

brush-border membrane Na-P cotransporter activity in response to a low P diet is correlated 

with an increase in type Ha transporter protein (Boyer et al. 1996). However, low P diet-

induced changes in the levels of specific mRNA were rather small, and transport adaptation 

was not prevented by actinomysin D (Biber et al. 1988). The conflict in the mRNA levels 

and transport protein synthesis may be explained by evidence derived from cell lines. Cells 

incubated in low P medium underwent a rapid increase in the V^of the Na-independent P 

cotransporter, which was independent of protein synthesis (Biber and Murer 1985; 

Caverzasio et al. 1985). A slow phase of adaptation occurred several hours later and this 

phase could be inhibited by blocking protein synthesis (Caverzasio et al. 1985; Levi et al. 

1994). 
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D. The recycle of salivary P in ruminants 

Physiological role of salivary Pi 

Saliva P is an important route of secretion of P in ruminants. It contributes 5 to 10g of P in 

sheep and 30 to 60g of P in cattle (Breves and Schroder 1991). Most is reabsorbed in the 

small intestine. However, the secretion of saliva P accounts for 80% of P in the digestive 

tract and therefore, is the major source of endogenous fecal P excretion (Temouth 1989). 

Other sources of endogenous P are from bile, and the nuclei acids and phospholipids from the 

rumen microbial biomass (Tamminga 1996). 

In addition to being the major source of endogenous fecal P loss, the salivary P is also 

important in buffering the volatile fatty acids producing in the rumen and supplying the P 

needed for the rumen microbes growth (Care 1994). 

Composition and source of salivary Pi 

The forms of P in saliva are H2P04 ", HP04
2' or P04

3". In sheep, salivary phosphate 

concentration in parotid glands varies widely, ranging between 2 and 60 mmol/l. Because 

salivary Pi concentration is proportional to plasma Pi and dietary P intake (Manas-Almendros 

et al. 1982), it is believed that excess plasma Pi is recycled by the salivary glands instead of 

being excreted in the urine (Kay 1960; Care 1994; Widiyono et al. 1998). Thus, the major 

route of P excretion in ruminants is through the digestive tract. The recycling of P through 

saliva may exceed fecal excretion 5 to 10 fold (Tamminga 1996). How the plasma Pi is 

transported to the salivary gland is not clear. Under physiological conditions, salivary Pi 

concentration is at least 3 times higher than plasma Pi, suggesting that Pi does not enter 

saliva by passive diffusion of plasma Pi. Vesicle studies showed the presence of a Na/P04
3" 

cotransporter in the basolateral membranes of sheep parotid cells (Vayro et al. 1991), 

supporting the role of an active transport system in maintaining salivary P concentration. 
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Factors influencing salivary Pi secretion 

a. Dietary P concentration and physical nature of the diet 

Experiments in sheep demonstrated that low P diets led to a decrease in plasma P 

concentration, which in turn, decreased the amount of P secreted in saliva. However, if 

roughage is fed the salivary P increased regardless of the fact that the diet is low in P 

(Rajaratne et al. 1996). On the other hand, pelleted or finely ground diets as well as 

digestible grasses decrease the rate of salivary P secretion (Scott and Buchan 1987). 

b. Hormone regulation of salivary Pi secretion and concentration 

The effect of PTH on salivary Pi secretion is contradictory. Some research reported that 

PTH increased salivary Pi secretion in non-lactating, non-pregnant sheep (Clark et al. 1975). 

But the increment depends on the P status of the animal and on local blood flow in the 

parotid gland. In P-repieted sheep, PTH increased salivary Pi concentrations and this was 

accompanied by increased local blood flow in the parotid glands. However, PTH given to P-

depleted animals had no effect on salivary Pi (Wright et al. 1984). 

Other studies have found that PTH decreased salivary P concentration and secretion in 

sheep and goats even the animal was in hypophosphatemia and had low salivary P (Manas-

Almendros et al. 1982). In another study, l,25(OH)2D3 decreased salivary P concentration 

and secretion even as it induced hyperphosphatemia and hypercalcemia. When circulating 

1.25(OH)2D3 is inhibited, secretion and concentration of salivary Pi is increased. This 

suggests that plasma Pi can influence the concentration of salivary Pi but that hormones 

regulate the salivary Pi concentration (Manas-Almendros et al. 1982; Riad and Lefaivre 

1987). Riad et al. (1994) further demonstrated that the effect of PTH on decreasing P 

secretion in saliva was mediated by 1,25(OH)2D3 (Riad and Lefaivre 1987; Riad et al. 1994). 

In cattle, l,25(OH)2D3 decreases salivary P concentration and secretion even when 

hyperphosphatemia is present. Salivary P secretion and concentration is increased when 

circulating l,25(OH)2D3 is inhibited and decreased when plasma l,25(OH),D3 is increased. 

This suggests plasma l,25(OH),D3 rather than phosphatemia regulates salivary P 

concentration and secretion in cattle(Riad and Lefaivre 1987). 
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The effect of calcitonin on salivary Pi was tested in thyroidectomized sheep. Salivary Pi 

was increased by administration of porcine calcitonin, and this effect was accompanied by 

a decrease in plasma Pi concentration (Matsui et al. 1984). 

Besides the hormones, the parasympathetic nervous system, acting via muscarinic receptors, 

is the major stimulus for secretion by ruminant salivary glands and greatly affects the volume 

of saliva produced. 

E. Phosphorus secretion during gestation and lactation 

P transfer during gestation 

In rats, Pi is transferred across the placenta by a Na-dependent mechanism. This 

mechanism is saturated at physiological concentrations of maternal plasma Pi. However, 

when the Pi on the fetal side of placenta is higher than on the maternal side, the transfer was 

decreased, suggesting a control by a negative feedback between fetal concentration of Pi and 

the Pi transfer rate (Stulc and Stulcova 1996). In humans, plasma Pi levels are normal 

throughout pregnancy whereas fetal Pi levels are higher than maternal (Schauberger and 

Pitkin 1979), suggesting Pi may be actively transported across the placenta (Weiss et al. 

1998) (Stulc and Stulcova 1996). 

In ruminants, transfer of Pi from high maternal plasma Pi pool to that of fetus is by passive 

diffusion. House and Bell (1993) reported that the conceptus in Holstein cows at 190 days 

and 280 days of gestation contained 1.8g and 5.4g P. Therefore, they suggested that 5.4g of 

P should be supplied to meet the maximal requirements for conceptus growth by the end of 

gestation in addition to the amount for daily maintenance. Calcitrol produced by fetal kidney 

increases both Ca and Pi transfer across placenta (Durand et al. 1983). Fetal PTH and PTHrP 

stimulate Ca transport but not P transport (Abbas et al. 1989; Care and Abbas 1990; Barlet 

and Davicco 1994). Even when the mother is in mineral deficiency, the fetus still has normal 

weight and bone mineralization at birth, indicating adequate mineral supply to the fetus is at 

the expense of maternal skeleton. 
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In reproducing sows, low Ca and low P diet results in high incidence of leg problem 

during gestation (Nimmo and Peo 1981). Mahan and Fetter (1982) reported the 

observation of trabecular bone demineralization, suggesting the mobilization of Ca and Pi 

from maternal bone to fetus (Mahan and Fetter 1982). However, the control on transfer of 

Ca and P across placenta is not clear. The average mineral deposition in a litter of pigs with 

a birth weight of 14kg was 2.2g/day of P and 3.7g/day of Ca (Gueguen and Perez 1981). 

P secretion during lactation 

The concentration of P in milk is 0.9g/kg (NRC 2000). A cow producing 9000kg milk 

secretes about 8.56kg P into milk in a lactation course. In order to make up the loss of P in 

milk she has to consume 29g/day from the diet, if the dietary P is 100% available, just for 

daily milk production (Horst 1986). However, only l-2g inorganic P is present in blood. It 

is not likely that absorption of dietary P would make up such amount of daily P loss in a 

short time. Therefore, cows are in negative P balance. Bone P is released to provide the P 

needs when cows are in the peak of milk yield. Carstairs et al. (1981) reported 500g to 600g 

of Pi is mobilized from bone during early lactation (Carstairs et al. 1981). 

Most studies reported no effect of dietary P on milk production unless dietary P is decreased 

to 0.24% (Call et al. 1987). A study showed Pi in milk was higher for cows in first lactation 

than muciparous cows and dietary P did not affect milk P concentration. However, milk P 

declined in later lactation with reduced milk yields. Interestingly, the authors also reported 

that month of year affects inorganic P in milk because milk P was reduced during summer 

months in their study (Forar et al. 1982). 

F. Bone resorption in P homeostasis 

Bone can serve as a mineral reservoir. About 98% of total body Ca and 80% of total body P 

is deposited in bone as hydroxyapatite. Since 5% of blood flow is through bones per minute, 

the blood rapidly equilibrates with the readily exchangeable Ca and P, as well as with the 
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Mg, Na and K of bone. Most phosphate is released in association with calcium as part of 

the mechanism for maintaining normal blood Ca concentration (Avioli and Krane 1998). 

Bone is constantly remodeled. The remodeling is achieved by bone resorption coupled with 

bone formation. Under normal conditions, bone density and mass remain constant when 

bone resorption and formation are balanced. However, such equilibrium breaks when large 

amount of Ca and P are required for lactation or eggshell formation. Bone Ca and P are 

released under the regulation of hormones, which result in the decrease of bone mass and 

density. Nevertheless, the loss of Ca and P in bone will be replenished during the latter 

period of a reproductive cycle with appropriate dietary Ca and P supply (Carstairsl et al. 

1981; Horst et al. 1997). 

The role of bone in hens during eggshell formation 

In laying hens, besides the cancellous (trabecular bone) and cortical bone formed during 

growth, medullary bone forms when birds reach sexual maturity at about 25-week of age. 

Medullary bone (MB) is composed of spicules within the marrow cavity and also a mineral 

layer lining the surface of the tibiae and femur. The mineral composition of MB is similar to 

cortical or cancellous bone except there is little orientation of collagen fibers in matrix. 

Therefore, it is mechanically weaker than structural bone (Whitehead and Fleming 2000). 

The formation of MB is controlled by sex hormones. Administration of estradiol and 

testosterone to male chicks induced formation of MB in the marrow cavities of femora and 

tibiae accompanied with increased plasma Ca, P and ALP activity. Anti-estrogenic 

compounds, trioxifene and tamoxifen, inhibited MB formation and associated serum 

parameters (Williams et al. 1991). 

MB is more important to Ca homeostasis than to P homeostasis. MB is a reservoir of 

readily available Ca and provides Ca for shell formation (Whitehead and Fleming 2000) (Bar 

and Hurwitz 1984). However, the regulation of Ca homeostasis to supply Ca for egg shell 

formation and MB mineralization is mediated by l,25(OH)2D3 instead of sex hormones (Bar 

et al. 1978). During egg-laying cycle, the activity of renal 1 «-hydroxylase and plasma Ca 

are increased before and at the time of ovulation. Plasma l,25(OH)2D3 is increased later and 
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remains high until 12 hours post-ovulation (Castillo et al. 1979). Both Ca and P absorption 

is increased. If egg production is inhibited by drugs, the activity of 1 «-hydroxylase and 

intestinal calcium binding protein (CaBP) are decreased but no change is observed in plasma 

Ca, estrogen and MB. 

Under dietary Ca deficiency, MB is reabsorbed (Williams et al. 1991), whereas vitamin D 

deficiency results in absence of MB (Bar and Hurwitz 1984). Both induced hypertrophy of 

parathyroid gland. However, dietary P deficiency and hypophosphatemia had no effect on 

the activity of kidney 25-(OH)D3-l-hydroxylase though the intestinal CaBP was increased. 

There was no change in the size of parathyroid gland either. The osteoid was increased, as 

an indicator of the failure of bone mineralization, suggesting the reduction of MB induced by 

P deficiency was due to the inhibition of bone formation rather than the stimulation of bone 

resorption (De Barros et al. 1981; Wilson and Duff 1991). 

The presence of MB was once thought to be detrimental to bone strength, because calcium 

is thought to be used to form MB at the expense of the cancellous and cortical bone during 

the laying period (Bar and Hurwitz 1984). Recently, it was demonstrated by radiography of 

the humeral diaphysis that the formation of MB was not at the expense of the surrounding 

cortical bone. On the contrary, larger amounts of MB contributed to fracture resistance of 

the cortical bone (Fleming et al. 1998). 

Bone in lactating cows 

A cow producing 9000kg milk in a 300 days of lactation course secretes average 35g Ca 

and 27g P into milk ever day. The total Ca and Pi in blood pool are 2-4g and l-2g, 

respectively. Even the dietary Ca and P supply meets the requirement for milk production 

and maintenance, bone resorption still occurs, and increasing dietary mineral concentrations 

does not prevent the resorption. Bone P mobilization is accompanied with Ca mobilization, 

whereas bone Ca mobilization is induced by the acute decrease in the plasma Ca 

concentration when large amount of Ca is excreted for milk production (Horst et al. 1997). 

PTH is released, which stimulates bone resorption and increases l,25(OH)2D3 synthesis, as 

well as increases urinary Ca reabsorption. Bone loses 13% of its total Ca and provides 500 to 
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600g of P during early lactation (Carstairs et al. 1981; Horst et al. 1997). The loss of bone 

mass will be replenished in later lactation by increasing intestinal Ca and P absorption 

mediated by the continuously elevated plasma l,25(OH)2D3 concentration (Horst et al. 1997). 

Hormonal regulation of P homeostasis 

Phosphorus homeostasis is primarily regulated by 3 hormones; l,25(OH)2D3, parathyroid 

hormone (PTH) and calcitonin (CT). In addition, glucocorticoids and growth hormone (GH), 

also play roles in regulating plasma P concentrations. 

Hypophosphatemia has direct and indirect effects on the small intestine to induce P 

absorption. Low plasma P stimulates the activity of 1-alpha hydroxylase in the kidney and 

therefore, the production of l,25(OH)2D3, which in turn, increases intestinal vitamin In

dependent P transport. Meanwhile, the low plasma P directly activates the Na/P symporters 

in the brush border membrane of small intestine to increase the of P transport 

(Tenenhouse 1997; Hattenhauer et al. 1999). 

PTH secretion is inhibited during hypophosphatemia. This is because the elevation of 

l,25(OH)2D3 induced by low plasma P increases Ca absorption, which reduces the secretion 

of PTH. On the other hand, l,25(OH)2D3 itself inhibits the transcription of PTH mRNA. In 

addition, cell size and proliferation in parathyroid glands is directly decreased by low plasma 

P (Wang and Paloyan 1996; Silver and Sela 1997; Funahashi et al. 1998; Silver et al. 1999) 

via a post-transcriptional mechanism. The overall reactions decrease plasma PTH and 

therefore, reduce urinary P excretion. Low plasma P also increases the renal P reabsorption 

capacity via intrinsic mechanisms (Audran and Kumar 1985). The reduction in renal 

excretion and increase in intestinal absorption re-establish the normal serum P in rats, mice, 

rabbits, pigs and chicks. 

Unlike monogastrics, P deficiency does not stimulate l,25(OH)2D3 synthesis in goat and 

sheep. Nevertheless, in lactating goats, P depletion significantly increased the binding 

affinity of VDR in the small intestine and response to l,25(OH)2D3 (Schroder et al. 1990; 

Shirazi-Beechey et al. 1991). 
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During hyperphosphatemia, renal excretion becomes the major mechanism to decrease 

excessive P in both monogastrics and ruminants. High plasma P inhibits the activity of 

renal 1-alpha-hydroxylase and reduces l,25(OH)2D3 production. The declining plasma 

l,25(OH)2D3 decreases both P and Ca absorption from small intestine. The secretion of PTH 

is induced by low plasma Ca, which enhances renal excretion of P. However, when calcium 

concentration is above 17mg/dl or the calcium*phosphate product in blood exceeds the 

solubility product (about 4.85x10 * molar units), calcium-phosphate precipitates form 

throughout the soft tissues. 

A. l,25(OH)2D3 

I,25(OH)2D3 is the biologically active form of vitamin D. The two most important forms of 

vitamin D are vitamin D3 and vitamin D,. The difference in structure between these two 

compounds is the methyl group on carbon-24 and the presence of a 22,23-double bond in 

vitamin D, as compared with vitamin D3. In the rachitic chick bioassay, l,25(OH):D: is 10 

times less active than l,25(OH)2D3 though the duodenal vitamin D receptor binding capacity 

to both compounds is the same. Vitamin D3 is 80 times more active than D2 suggesting the 

discrimination against vitamin D, in chickens occurs before the formation of l,25(OH)2D;. 

D, and D, compounds activities are equivalent in rats (Rambeck, Weiseret al. 1984). 

Dietary vitamin D3 absorption and metabolism 

Because vitamin D is lipid soluble, dietary vitamin D is transported to the liver via 

lymphatic circulation after being absorbed by small intestine. The circulating vitamin D, is 

converted to 25(OH)D3 by enzymes in the mitochondria of the liver cells. 25(OH)D3 is the 

most abundant vitamin D metabolite in plasma. It is bound to a 2-globulin and further 

converted to l,25(OH)2D3 in the kidneys (Reinhardt et al. 1988). When plasma l,25(OH)2D, 

and/or plasma phosphate is high, the 24-hydroxylase is activated and 25(OH)D3 is converted 

to 24R-25(OH)2D3 (Tanaka and Deluca 1973). Other tissues process l,25(OH)2D3 receptor 

also have 25(OH)D-24-hydroxylase. The physiological role of 24-hydroxylation is unclear. 
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In poultry, 24,25(OH)2D3 promotes hatchability of eggs (Henry and Norman 1978). In 

humans, it increases bone mineralization with the presence of l,25(OH)2D3 (Bordier et al. 

1978). But l,24,25(OH)3D3 has no function in enhancing bone mineralization (Holick et al. 

1973). The presence of 24-hydroxylase in the kidney could be for side-chain catabolism of 

25(OH)D3 and l,25(OH)2D3 (Castillo et al. 1979). In ruminants, vitamin D metabolism 

begins in the rumen. Both vitamin D2 and D3 can be converted by microorganisms to trans-

10-keto-19-nor-vitamin D. 

25(OH)D3 and l,25(OH)2D3 are metabolized on the carbon-26 or carbon-23 position under 

physiological conditions (Reinhardt et al. 1981) (DeLuca et al. 1970). For review of vitamin 

D metabolism refer to Horst et al. (1994) (Horst et al. 1994). 

Regulation of l,25(OH)2D3 secretion 

Synthesis of l,25(OH)2D3 is controlled by 25(OH)-1 «-hydroxylase in the kidney. 25(OH)-

1 «-hydroxylase is stimulated by an increase in the serum PTH, a decrease in the serum Ca 

and P, and a decrease in the activity of 24-hydroxylase (Gray 1981). Hypocalcemia, initially 

thought to act via stimulation of PTH release, has been shown to directly stimulate 1-

hydroxylation in mammals. In ruminants, PTH is the most important factor that stimulates 

the formation of l,25(OH)2D3 (Hove 1984; Horst 1986). 

a. Plasma Ca concentrations and PTH 

Hypocalcemia stimulates PTH secretion, which induces the activity of 1 «-hydroxylase in 

the renal proximal tubular cells (Omdahl et al. 1972; Henry and Norman 1984). The effect of 

PTH is mediated by cAMP (Rost et al. 1981). PTH also decreases the activity of 24-

hydroxylase and further decreases degradation of l,25(OH)2D3 (Henry 1981). Brebza et al. 

(1998) reported that the effect of PTH on 1 «-hydroxylase was through activation of gene 

promoter (Brenza et al. 1998). 



25 

b. Dietary P concentrations 

The effect of low dietary P on the activation of 1 «-hydroxylase is independent of PTH 

and plasma ionic Ca concentration (Hughes et al. 1975; Bushinsky et al. 1989). It is 

controlled at the mRNA level (Shinki et al. 1997). Besides, the expression of 24-hydroxylase 

mRNA was decreased during hypophosphatemia (Wu et al. 1996), which inhibits l,25(OH) 

2D3 degradation. However, the activation in 1 «-hydroxylase by dietary P restriction was not 

observed in hypophysectomized rats and diabetes rats (Gray 1987). When growth hormone 

and insulin were given to the animals the activation on 1 «-hydroxylase was restored, 

suggesting IGF-I and insulin are involved in the Pi-regulated l,25(OH)2D3 synthesis (Gray 

1987) (Matsumoto et al. 1986). 

Inhibitors of the renal 25(OH)D-l alpha-hydroxylase include l,25(OH)2D3 itself, 

hypercalcemia, and high blood phosphate (Breslau 1988). l,25(OH)2D3 inhibits the activity 

of 1 «-hydroxylase and stimulates 24-hydroxylase at mRNA level. Hence it inhibits its own 

synthesis and increases degradation (Monkawaet al. 1997). When 24-hydroxylase is 

activated by high plasma l,25(OH)2D3 and/or plasma phosphate (Tanaka and Deluca 1973) 

25(OH) D i> directly converted to 24,25(OH)2D3. Tissues with a receptor for l,25(OH):D3 

also haw been shown to possess an inducible 24 hydroxylase. The degradation of 

24S,25(OH):D. and 1,25(OH)2D3 can be found in all tissues(Horst, Goff et al. 1997). 

The median INITJS of l,25(OH)2D3 actions 

The action of 1.25(OH)2D3 is mediated by a) a nuclear receptor that is involved in 

regulation of gene transcription in over 30 cell types possessing this receptor (genomic 

pathway) and b) the plasma membrane receptor that is involved in initiation of signal 

transduction pathways which generate rapid biological responses (non-genomic pathway). 

The latter occurs in 4-6 minutes whereas the former takes more than 10 hours. 

a. Genomic pathway 

Only 5% of circulating l,25(OH),D3 is in the free state (Bikle et al. 1984; Bikle et al. 1985) 

and can diffuse into target cells. The free form of l,25(OH)2D3 binds with the intracellular 
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1,25(OH)2D3 receptor (VDR) to form heterodimer with the retinoic acid X receptor 

(VDR/RXR). The VDR/RXR heterodimer has high affinity for the vitamin D response 

elements (VDREs) in the promoter region of 1,25(OH) 2D3-dependent genes (Horst et al. 

1997). The genes that are negatively regulated by vitamin D include avian and human PTH, 

protein kinase A inhibitor and rat PTHrP, whereas genes positively regulated include 

intestinal CaBP and Na/P cotransporter (Brown et al. 1999). 

b. Non-genomic pathway 

Recently, the non-genomic mechanism was demonstrated in bone cells and intestinal 

mucosal cells (Karsenty et al. 1985; Nemere 1996). 1,25(OH)2D3 agonists open the voltage 

gated L type Ca channel in the cell membrane, which increases transient intracellular Ca 

concentration and activates both PKA and PKC signal transduction pathway (Sylvia et al. 

1996). The rapid action is also mediated by altered phospholipid synthesis (Morelli et al. 

1993). 

Action in intestine 

The vitamin D-dependent active P transport in epithelium is distinguished from that of Ca 

(Peterlik and Wasserman 1978). Through the genomic pathway, l,25(OH)2D3 stimulates the 

expression of Na-P cotransporter (Yagci et al. 1992). Nemere (1996) recently reported a 

non-genomic pathway of 1,25 (OH)2D3 for P absorption. Low levels of l,25(OH);D3 

stimulated rapid (4-8 minutes) phosphate transport in the perfused duodenal loop of normal 

chicks (Nemere 1996). 

l.25(OH)2D3 stimulates active absorption of Ca by increasing synthesis of calbindin and 

plasma membrane Ca pump in the enterocyte. These actions are mediated by VDR (Cai et al. 

1993; Wasserman and Fullmer 1995). In aged rats, the rate of Ca absorption, the synthesis of 

calbindin-D9k and plasma membrane Ca pump mRNA, as well as the ATP-dependent Ca 

uptake by basolateral membrane vesicles are decreased. Because the Ca pump mRNA was 

significantly increased following administration of l,25(OH),D3 to both young and old rats, 

the decreased reactions in the aged animals might be due to the age-related decline in serum 



27 

l,25(OH)2D3 levels, rather than development of resistance of the Ca pump gene to 

l,25(OH)2D3 action (Armbrecht et al. 1988). 

Action in the kidneys 

The effect of l,25(OH)2D3 on renal Ca reabsorption was demonstrated in distal convoluted 

tubule cells (Friedman and Gesek 1993). l,25(OH)2D3 accelerated PTH-dependent calcium 

transport and calbindin expression (Bindels et al. 1991). Hence, the renal Ca reabsorption is 

increased. 

The primary action of l,25(OH)2D3 is to increase tubular P reabsorption by increasing the 

Vm of the P transport system and the synthesis of the specific Na/P cotransporter (Liang et 

al. 1982; Liang et al. 1982). Administration of vitamin D to normal, vitamin D-deficient, and 

thyroparathyroidectomized animals decreases P excretion, suggesting l,25(OH)2D3 directly 

induces phosphate reabsorption in the proximal tubule without the influence of PTH and 

plasma Ca (Gekle et al. 1969). 

Action on bone 

Bone mineralization induced by l,25(OH)2D3 is through increasing intestinal Ca and P 

absorption to supply the minerals for hydroxy apatite formation (Slovic et al. 1981). 

Recently, a membrane receptor for l,25(OH)2D3 was identified and confirmed a non-genomic 

role for l,25(OH)2D3 in the increased specific activity of alkaline phosphatase, 

phospholipase A2, and matrix metalloproteinases in chondrocytes. The rapid action occurred 

within 3 minutes and reached maximal activation by 9 minutes (Boyan, Dean et al. 1994). 

The non-genomic action of l,25(OH)2D3 was also shown in rat osteoblast cell-line ROS 

17/2.8, which stimulated calcium influx via L-type Ca channels and therefore, elevated 

intracellular Ca. 

The effect of l,25(OH)2D3 on bone resorption, however, is indirect and only demonstrated 

in vitro because VDR is found in mature osteoblasts rather than osteoclasts (Suda et al. 1990; 

Suda et al. 1992). In vitro test demonstrated that l,25(OH)2D3 stimulated osteoblasts to 
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release ostoclast-activating activity that acts through paracellular way on bone resorbing 

cells to mobilize Ca from bone (Ohyamaet al. 1991). 

B. Parathyroid hormone (PTH) 

Parathyroid hormone is the most potent factor regulating Ca and P homeostasis. Its effect 

on stimulation of l,25(OH)2D3 synthesis contributes to its importance in the regulatory role. 

However, the negative feedback loop exists between PTH and plasma Ca and Pi 

concentrations. In addition, l,25(OH)2D3 may inhibit PTH synthesis at the mRNA levels. 

Regulation of PTH synthesis and secretion 

a. Plasma Ca concentration 

Plasma Ca concentration regulates the synthesis of PTH at the PTH gene transcription 

levels (Russell et al. 1983). PTH mRNA levels was promptly increased during acute 

hypocalcemia and moderately decreased during hypercalcemia (Yamamoto et al. 1989). This 

suggests parathyroid gland is more prepared for PTH synthesis and secretion through 

transcription mechanism in response to the low plasma Ca. Extracellular Ca also influences 

the degradation of newly synthesized PTH. When bovine parathyroid gland was incubated in 

hypocalcemia medium, intact PTH was secreted. The secretion of degraded PTH was 

observed when the medium contained high Ca concentration. This suggests that parathyroid 

glands regulate the amount of bioactive hormone for secretion in response to Ca 

concentrations (Chu et al. 1973). 

In addition to PTH synthesis, plasma Ca concentration regulates the secretion of PTH. 

When plasma Ca is low, the secretion of PTH is increased. Lowered extracellular Ca is 

detected by the Ca-sensing receptor, which activates the protein kinase C in parathyroid cells 

and triggers the secretory process (Butters et al. 1997). In calves, PTH secretion reaches 

maximum when plasma calcium is decreased to 7.5mg/dl (Mayer and Hurst 1978). On the 

other hand, when plasma Ca concentration is above normal, it does not inhibit PTH secretion 

completely. 
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b. Plasma Pi concentration 

Hyperphosphatemia decreases the levels of ionized Ca, and thus stimulates PTH secretion 

(Sherwood et al. 1966). 

c. l,25(OH)2D3 

Pharmaceutical dose of l,25(OH)2D3decreases the secretion of PTH by suppressing the 

PTH gene transcription (Cantley et al. 1985). 

The primary function of PTH is to maintain a constant concentration of Ca in the 

extracellular fluid. PTH also plays a role in P homeostasis by stimulating bone resorption 

and increasing renal P excretion. Thus, excessive P is removed by phosphaturia. 

PTH on kidney 

By stimulating Na/Ca exchanger and Ca/Mg-ATPase, PTH increases Ca reabsorption in the 

distal nephron segments (Greger et al. 1978; Bouhtiauy et al. 1991). PTH also has effect on 

translocation of preformed Ca channel and functioning Na-P cotransporter. PTH triggers the 

translocation of intracellular Ca channels to the luminal membrane to increase Ca uptake. 

Meanwhile, PTH stimulates the moving of functioning Na-P cotransporter in the luminal 

surface into the intracellular space to decrease P uptake. Such effect explains the bi

directional action of PTH on Ca and P reabsorption (Bacskai and Friedman 1990). 

PTH regulates P excretion through changing the ratio of maximum transport rate to 

glomeruler filtration rate (TmP/GFR). When PTH levels are low, the TmP/GFR is increased, 

and hence urinary P excretion is decreased. When PTH is elevated, the TmP/GFR is reduced 

and more P is excreted in the urine. The cellular mechanisms of PTH inhibition on renal P 

reabsorption involve endocytosis and lysosomal degradation of Na/P cotransporter. This 

action could be cAMP dependent or independent. Injection of PTH in rats or mice leads 

within minutes to a reduction in brush border membrane transporter. A prolonged increase in 

PTH leads to decrease the mRNA levels of type II Na-P cotransporter (Gmaj and Murer 

1986), and thus inhibits P reabsorption. 
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However, the elevation of PTH induced by chronic high P diet intake had little effect in 

renal P excretion because urinary cAMP was decreased. The high urinary P excretion 

might result from decreased PTH/PTHrP receptor during high P diet feeding (Masuyama et 

al. 2000). 

PTH on bone 

Like l,25(OH)2D3, the effect of PTH on bone resorption is indirect. Mature osteoclasts do 

not have PTH/PTHrP receptors (Rouleau et al. 1988), whereas osteoblasts have PTH/PTHrP 

receptors. Therefore, it is believed that osteoblasts mediate the effect of PTH on osteoclasts 

(Hakeda et al. 1989; Teti et al. 1991). PTH stimulates osteoblasts proliferation and 

differentiation (Rouleau et al. 1988). The mature osteoblasts then activate osteoclasts, 

through paracrine stimulation, to undergo bone resorption process and release Ca and P into 

blood (Yamashita et al. 1990). 

PTH on intestine 

The synergetic effect of PTH and l,25(OH)2D3 on increasing intestinal calcium uptake has 

been reported in normal rats and normal chicks (Nemere and Szego 1981; Nemere and 

Norman 1986). Recently, the rapid effect (within 4 minutes) of PTH on stimulating intestinal 

P transport was also demonstrated in perfused duodenal loops of chicks (Nemere 1996). 

This suggests that PTH plays a role in intestinal Ca and P absorption. This effect might be 

significant to rachitic animals because these animals usually develop hyperparathyroidism. 

Though high plasma PTH alone has little effect in Ca and P transport, it enhances ion 

transport by non-nuclear pathways when vitamin D is repleted (Nemere et al. 1987; Nemere 

et al. 1991; Nemere 1996). 
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C. Calcitonin(CT) 

Like PTH, the secretion and biosynthesis of CT from C cells are regulated by plasma Ca 

concentrations. The exact mechanism of Ca stimulation on CT exocytosis has not been fully 

understood. Nevertheless, the Ca-sensing receptor was demonstrated in parathyroid cells and 

in C cells. Its presence suggests that activation of the same receptor can either stimulate or 

inhibit hormone secretion in different cell types (Brown et al. 1993; Garrett et al. 1995). The 

half-life of calcitonin is about 10 minutes. Therefore, the hormone is most likely secreted at 

a continuous rate when plasma concentration Ca is normal. CT is degraded by liver and 

kidney to inactive fragments. 

Action of CT on bone, kidney and intestine 

CT directly inhibits bone resorption via osteoclastic and osteocytic cells, which contributes 

to hypocalcemia and hypophosphatemia (Talmage et al. 1972; Maclntyre et al. 1987). The 

ruffled border of the osteoclasts is decreased by CT stimulation, indicating their diminished 

activity in bone resorption. The depression of bone resorption decreases urinary excretion of 

Ca, Mg and hydroxyproline. The hypophosphatemia induced by CT results from decreased 

bone resorption and increased urinary P excretion. 

In young pigs (<40 day old), CT inhibits net absorption of Ca flux rates in the proximal 

jejunum and distal ileum but not in the duodenum under physiological concentration 

(3.8ng/ml), but no effect on P flux rates. This suggests that the role of CT is more important 

to Ca than to P homeostasis (McKercher and Radde 1981). 

D. Glucocorticoids 

Glucocorticoids decrease the absorption of Pi in small intestine and reabsorption of Pi in 

renal tubules. In small intestine, glucocorticoids inhibit Pi absorption by decreasing the 

maximal transport capacity of the Na/Pi cotransporter. No change was observed in the 

affinity for phosphate or sodium. Interestingly, the inhibition of P transport by 
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glucocorticoid was only observed when dietary Ca and P are normal. Low P or low Ca 

diets that stimulates P absorption by the production of l,25(OH)2D3 was unaffected by the 

administration of glucocorticoid (Fox et al. 1981). 

In the kidneys, the type II Na/Pi cotransport activity in brush border membrane was 

decreased when rats were given glucocorticoid. This effect could explain the development of 

osteoporosis in animals treated with long term glucocorticoid (Noronha-Blob and Sacktor 

1986; Borowitz and Granrud 1992). 

E. Growth hormone (GH) and insulin-like growth factor-I (IGF-I) 

The effect of GH and IGF-I relates to the synthesis of l,25(OH)2D3. In hypophysectomized 

animals, hypophosphatemia has no effect on the activity of renal 1 «-hydroxylase and the 

inhibition on renal P excretion. Exogenous GH restores the production of l,25(OH)2D3 

(Gray 1981; Gray and Garthwaite 1985), suggesting that GH plays an direct or indirect role 

in regulating 1-hydroxylase activity (Caverzasio et al. 1990). Aged rats do not respond to 

low dietary Ca and P to stimulate l,25(OH)2D3synthesis as young rats do. By administration 

of IGH-I the response is restored in old rats. Since IGF-I concentration is decreased by age, 

it indicates the age-related loss of l-« hydroxylase activity is reversible and IGF-I is 

involved in the impairment of 1.25(OH)2D3 synthesis (Wong et al. 1997; Wong et al. 2000). 

Solcmum elaiicophvllutn research in animals 

Family: SOLANACEAE 

Species: Solanum glaucophyllutn Desf 

Synomyns: 

Solanum amygdalifoliutn Siend., ex Sendth, Solanum angustifolium Lam., 

Solanum glaucum Dunal. Solatium hanclelianum Morong, 

Solanum malacoxylon Sendth., Solanum malacoxylon Sendtn.var, albomarginatum Chodat, 

Solanum malacoxylon Sendtn. forma vulgare Hassl., 
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Solanum malacoxylon Sendtn, var. genuinum Hassl. 

Common name: Waxyleaf Nightshade 

Distribution: Eastern and central part of Buenos Aires Province in Argentina and Matto 

Grosso in Brazil (Okada et al. 1977; Boland 1986; Skliar et al. 2000). 

Solanum glaucophyllum (Sg) was first described in 1846 by Sendtner. It is one of the most 

important calcinogenic plants in Argentina. The plants have long stems, about 1 to 3m in 

height with few branches. Their leaves are 9-13 cm in length and 1-2 cm in width, which 

continuously shed to the ground as they grow old. The flower of Solanum is light purple and 

the fruit is purple with many seeds. The root system is deep and extensive and the stems are 

perennial. In the winter the leaves die but new leaves grow in spring from buds on existing 

stems (Okada et al. 1977). The fallen leaves and small immature stems mix with pasture and 

may be accidentally ingested by the grazing animal. The intake of large amount of Solanum 

leaves induces toxicity characterized by loss of appetite and weight, joint stiffness and a 

painful gait. Animals develop hypercalcemia, hyperphosphatemia and soft tissue 

calcification (O'Donnell and Smith 1973). Most animals die from acute cardiac and 

pulmonary insufficiencies, which cause great economic loss in Argentina (Capen et al. 1966: 

Worker and Carrillo 1967; Mautalen 1972). 

A. The structure and components of l,25(OH)2D3 glycosides in Sg leaves 

The vitamin D-like action in Sg leaves was first demonstrated by O'Donnell and Smith in 

1973(0'Donnell and Smith 1973). Shortly afterward, a water soluble, l,25(OH)2D3glycoside 

was identified by HPLC and mass spectrometry (Wasserman et al. 1976). The A ring of 

1.25(OH)2D3 molecule links at least 1 glucose or fructose molecule at 1 and 3 carbon 

positions by (3-glycosidic bonds (Vidal et al. 1985). The glycoside conjugates of vitamin D3 

and 25(OH)D3 were also detected in the leaf extracts and leaf cell culture (Esparza et al. 

1982). Recently, 7-dehydrocholecalcesterol was found in the Sg cell culture grown in the 

dark. Vitamin D3 and 25(OH)D3 appeared when the same culture system was moved under 
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the light, suggesting photosynthesis occurs in the leaves (Abutjai et al. 1996). Little is 

known about the mechanisms of the subsequent hydroxylation of vitamin D3 in the plants 

though research showed low activity of the 25(OH)-l«-hydroxylase in the mitochondrial 

fraction (Esparza et al. 1982). It is believed that the physiological role of these vitamin D3 

glycosides affect calcium uptake and calmodulin synthesis in the root, influencing root 

growth and differentiation (Buchala and Schmid 1979; Vega et al. 1988; Talmon et al. 1989). 

B. Equivalent of vitamin D bioactivity in Solanum leaves 

The vitamin D bioactivity in Sg leaves has been evaluated on rachitic chicks by in vitro 

intestinal receptor assay and in vivo bioassay. Some studies reported 10 to 60 ug of 

l,25(OH):D3 activity (or 82,800 IU to 300,000 IU of vitamin D3 equivalent) per kilogram of 

dry leaves. Others reported 120ug /g dry leaves of vitamin D3 activity. The wide ranges of 

vitamin D bioactivity in the Sg leaves result from factors such as geographic location, climate 

condition, and stage of development of the plant (Carrillo and Worker 1967; Procsal et al. 

1976; Puche et al. 1980; Mello and Habermehl 1998). 

The toxicity induced by Sg has been studied in poultry, rodents, ruminants and humans. It 

pathogenesis is mostly in bone and soft tissue calcification. However, some also reported the 

possibility of using Sg as treatment for cage-layer fatigue in hens and as a cheap source of 

l,25(OH)2D3 for human medicine. 

C. Solanum glaucophyllum(Sg)-induced toxicity in animals 

General mechanisms 

Sg enhances Ca and P absorption by increasing Ca binding protein synthesis in duodenum 

and vitamin D dependent P transport in jejunum (Wasserman et al. 1976; Schneider and 

Schedl 1977; Peterlik and Wasserman 1978). In ruminants, the effect of Sg in Ca and P 

absorption was potentiated by the microbial activity in the rumen(de Boland et al. 1978). 
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Rumen microbes not only hydrolyze the glycosidic bonds but also convert the vitamin D 

metabolites to l,24,25(OH)3D3 (Peterlik et al. 1976; Boland et al. 1987). 

Poultry 

When administered to laying hens, Sg increased Ca binding protein synthesis and hence, 

increased Ca absorption, which reduced the incidence of "caged-layer fatigue". By adding 

3.5g of dry Sg leaves powder/kg of 3.5% Ca basal diet, Morris et al. (1977) reported that the 

egg shell thickness was increased on the second and subsequent days of the experimental 

period (Morris and Jenkins 1977). 

The toxicity of Sg on chicks was reported by Ross et al. (1971). Hypercalcemia and 

increased bone ash was observed when chicks were fed normal Ca and P diet for 12 weeks 

with lOg/kg Sg leaf powder. When Sg was given at lg/kg diet, the breaking strength of the 

tibiae and weight gain was decreased. However, no soft tissue calcification was observed in 

any dosage of Sg, suggesting the level of Sg-induced toxicity is species dependent (Ross et 

al. 1971). 

Rabbits 

Retarded osteocytic osteolysis and osteopetrosis was observed in growing rabbits fed a 

normal Ca (0.6%) diet with Sg water extract (20g dry leaves/200ml DDW). The effect on 

bone induced by Sg could be eliminated when the dietary Ca was decreased to 0.24% (Santos 

et al. 1976). 

Mice and rat 

Solanum induced bone resorption in cultured mice calvariae (Simonite and Morris 1976; 

Liskova-Kiar and Proschek 1978). However, in growing rats fed Sg leaves for 7 days, the 

trabecular bone volume and bone apposition was increased (Norrdin et al. 1979). An in vitro 

test done by Stem et al. (1978) clarified this discrepancy of Sg on bone. Low Sg 

concentration (0.3mg/ml) induced bone resorption whereas high Sg concentration (lmg or 

above/ml) stimulated bone formation (Stem and Ness 1978). 
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Pig 

Unlike other monogastric animals, Sg increased not only Ca and P but also H20, K and Na 

absorption in vitamin D depleted pigs (Fox and Care 1976; Fox and Care 1979) (Done et al. 

1976). Hypercalcemia, hypophosphatemia and lung calcification were shown in weanling 

pigs. However, hypophosphatemia, rather than hyperphosphatemia, was enhanced when pigs 

were fed Sg incubated with rumen fluid. The authors suggested that pigs are less sensitive to 

the calcinogenic effect induced by Sg (Rucksan et al. 1978). 

Human 

Mautalen et al. (1977) reported that short-term treatment of renal failure patients with Sg 

leaf powder increased Ca absorption without changes in plasma P and PTH. It was proposed 

that Sg could be a good and inexpensive source of l,25(OH)2D3 for uremic patients 

(Mautalen et al. 1977). 

Cattle 

The clinical sign of the disease "enteque seco" in Argentina area is usually observed in 

cattle over 2 years old. The toxic effects of Solanum include weight loss, hypercalcemia, and 

hyperphosphatemia, as well as soft tissue calcification (Done and Dobereiner 1976). In 

response to the hypercalcemia, thyroid C cells hypertrophy and hyperplasia was observed. 

Under electron microscopy, parathyroid chief cells were inactivated or became atrophied 

(Collins et al. 1977). Experimental administration of a high dose (lg/kg/week) Sg for a short 

period of time, or a low dose (0.16g/kg/week) fora long period of time produced similar 

lesions to those found in the naturally occurring cases. 

Calves are less susceptible to the toxicity of Sg than the older animal (Dobereiner and Done 

1975). The dosage that could be tolerated by calves, 0.3g-2.4g/kg body weight, was 

sufficient to cause severe calcification of older animals. However, only moderate soft tissue 

calcification was observed in heart, arteries and kidney after intermittently dosing Sg leaves 

to Jersey bull calves for 87 day. 
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Sheep 

In adult sheep fed normal Ca and P diets, Solanum induced defective mineralization and 

increased bone forming surface and trabecular bone volume. The major components in the 

unmineralized bone were associated with the deposition of acid mucopolysaccharide 

(Woodard et al. 1993). 
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CHAPTER 2. RESTORING NORMAL BLOOD PHOSPHORUS 

CONCENTRATIONS IN HYPOPHOSPHATEMIC CATTLE WITH 

SODIUM PHOSPHATE 

A paper published in "Veterinary Medicine"1 

Ya-Hsin Cheng, BVSc, MS 2; Jesse P. Goff DVM, PhD and 

Ronald L. Horst, PhD^ 

INTRODUCTION 

Downer cow syndrome is an occasional sequelae to milk fever in dairy cows. Cows with 

milk fever are severely hypocalcemic (plasma calcium < 5 mg/dl) and usually 

hypophosphatemic (plasma inorganic phosphorus < 2 mg / dl) at the time of initial treatment 

for milk fever. In most cases intravenous administration of calcium salts raises blood 

calcium concentrations immediately, followed within a few hours by a rise in blood 

phosphorus concentration'. In some animals, however, plasma phosphorus concentrations 

fail to increase after therapy for milk fever, and it is thought that this results in a cow that 

fails to rise after treatment, or a "downer cows" W. Methods that restore plasma phosphorus 

concentrations to normal would thus help treat and prevent downer cow syndrome. 

' Reprinted with permission of Veterinary Medicine, 1998, April, p. 383-388 
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Most products available to veterinarians in the U.S. for intravenous treatment of 

hypophosphatemic cattle utilize hypophosphite (PO,*3) or phosphite (P03 
3) salts as the 

phosphorus source. Phosphite salts are used because they are very soluble in water and 

remain soluble even in the presence of calcium and magnesium, allowing preparation of a 

single product that can be used to treat low blood calcium, magnesium, and phosphorus 

conditions. However, phosphorus found in blood and body tissues is almost exclusively in 

the form of the phosphate anion (P04
3-). To our knowledge, no pathway exists for the 

conversion of phosphite to phosphate salts in body tissues. In this article, we reported the 

results of a study initiated to determine whether intravenously injecting phosphite salts 

results in a rise in plasma inorganic phosphorus concentration. We also describe an 

intravenous and oral treatment, utilizing sodium phosphate,that will effectively raise 

inorganic phosphorus concentrations in the blood of cattle. 

METHODS AND RESULTS 

Experiment 1 

In experiment 1, we evaluated the effectiveness of intravenous sodium hypophosphite and 

sodium phosphate as treatment for hypophosphatemia. The six animals used were 4 to 9 year 

old, nonpregnant, non-lactating Jersey cows. Moderate hypophosphatemia was induced in 

the cows by feeding them a 0.08% phosphorus diet for six days before the experiments 

(Adequate dietary phosphorus concentration is 0.36%). The diet was based on beet pulp and 

corn silage. Before feeding the low phosphorus diet, the cows' average plasma phosphorus 

concentration was 4.67 mg/dl. After feeding the low phosphorus diet for six days, plasma 

phosphorus concentrations decreased to 2.97± 0.24 mg/dl. 

The six cows were treated with intravenous phosphorus solutions, which provided 7g 

phosphorus as the phosphite or phosphate anion in a switchback design experiment. That is, 

three cows received phosphite and three cows received phosphate on the first treatment day, 

followed by the alternate phosphorus source three days later. Treatments consisted of 30g 

sodium phosphate, monobasic, monohydrate or 23g sodium hypophosphite dissolved in 



61 

300ml distilled water. The pH of both solutions was brought to 7.0 with sodium hydroxide. 

Autoclaved solutions were administered intravenously into the jugular vein over a period of 

10 minutes. Heparinized blood samples were collected from the contralateral jugular vein 

immediately before treatment and at one minute, 30 minutes, and one, two, three, four, five, 

and six hours after each treatment. Blood samples were centrifuged at 4C and 23000 rpm for 

15 minutes, and the inorganic phosphorus concentration was determined6. The assay used 

combines serum inorganic phosphate anion with molybdate to form phospho-molybdate, 

which reacts with paraphenylenediamine to form a stable molybdenum-blue complex 

obeying Beer's Law and absorbing light with a wavelength of 680nm. The assay will not 

detect inorganic phosphite. 

A factorial analysis of variance was used to examine the effects of treatment and time on 

plasma phosphorus concentration. Difference were considered significant when the 

probability of a difference's existing exceeded 95% (p<0.05). 

In those cows treated with intravenous sodium phosphite solution, no change was observed 

in plasma inorganic phosphorus concentrations. This suggested that the phosphite anion was 

not being converted to phosphate within the six hour time frame after treatment. In those 

cows treated with intravenous sodium phosphate, the plasma inorganic phosphorus 

concentration was significantly (p<0.01) increased to 13.62 ± 3.46mg/dl (mean ± SEM) one 

minute after phosphate administration and rapidly decreased to 3.47 ±1.44 mg/dl within two 

hours after treatment (Figure 1 ). Six hours after treatment, the plasma inorganic phosphorus 

concentration was 3.08 ± 0.78 mg/dl in the phosphate-treated group and 2.25 ± 0.5 mg/dl in 

the phosphite-treated group. 

Experiment 2 

A second experiment was performed to determine if oral supplementation with 50g 

phosphorus as either sodium phosphate or dicalcium phosphate could quickly raise plasma 

inorganic phosphorus concentration. Eight cows were fed the same low-phosphorus diet as 

in Experiment 1 for six days to induce a mild hypophosphatemia. Four cows were drenched 

with a solution containing 219g sodium phosphate, monobasic, monohydrate in 0.5 L 

distilled water, and four cows were drenched with a slurry containing 229 g calcium 
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phosphate, dibasic in 0.5 L distilled water. Heparinized blood samples were collected 

before treatment and at 30 minutes and one, two, three, four, five, six and 12 hours after 

treatment to determine inorganic phosphorus concentrations as described for Experiment 1. 

The change in plasma phosphorus concentration observed in cows treated orally with 

sodium phosphate was significantly (p<0.01) greater than that in cows treated with calcium 

phosphate. Plasma phosphorus concentration was increased from 3.33 ± 0.4 mg/dl before 

treatment to 5.9 ± 2.88 mg/dl within one hour in cows receiving the oral sodium phosphate 

treatment (Figure 2). This concentration remained elevated through the 12 hours after 

treatment. Plasma phosphorus concentration in cows receiving oral calcium phosphate was 

3.75 ± 0.75 mg/dl before treatment and was not significantly increased during the first six 

hours after treatment. However, 12 hours after calcium phosphate treatment, the plasma 

phosphorus concentration of cows treated with calcium phosphate had risen to 4.52 ±1.13 

mg/dl. 

DISCUSSION 

Based on findings from these experiments, hypophosphatemia in cattle can be treated 

effectively by intravenously injecting sodium phosphate solutions but not phosphite 

solutions. Sodium phosphate solutions can be made relatively inexpensively. In this 

experiment we raised the pH of the intravenous sodium phosphate solution to 7.0 by using 

sodium hydroxide before treatment. We noticed that crystallization had been beginning to 

occur at cooler outdoor temperatures (<41°F [5°C]). We resolved this problem by raising the 

pH of the sodium monophosphate solution to only 5.8, increasing the sodium phosphate's 

solubility. We have not noticed any problems using these slightly acidic solutions 

intravenously. A product using 30 g sodium phosphate, monobasic in 300ml water with no 

pH adjustment (pH< 3.0) is available in Australia and is thought to be effective5. There are 

sodium phosphate enemas formulated for use in people that contain 5 to 6 g phosphorus per 

treatment, with the pH adjusted to about 5.8(very similar to our formula described above). 

These enema preparations have been used for intravenous treatment of cattle7 after they were 
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diluted to 1 L with water to reduce the tonicity. Sodium phosphate solutions can not be 

mixed with Calcium- or magnesium-containing solutions because a precipitate will rapidly 

form. 

Oral sodium phosphate treatment (50 g phosphorus) caused a more prolonged increase in 

the plasma phosphorus concentration than did the intravenous treatment (7g phosphorus). 

More phosphate could be given intravenously, but this might result in excessive formation of 

calcium or magnesium phosphate precipitates in the blood since plasma phosphorus 

concentration are well above physiologic concentrations immediately after treatment. 

Intravenous phosphate solutions should not be given immediately before or after intravenous 

calcium treatment for this same reason. The two types of treatment should be spaced at least 

two hours apart. No such restrictions would be necessary for the oral sodium phosphate 

treatment. Sodium phosphate is more soluble than calcium phosphate, which probably 

explains why it is better able to raise plasma phosphorus concentrations. The speed with 

which the oral sodium phosphate treatment raised plasma phosphorus concentrations 

suggests that phosphate is being absorbed directly from the rumen or that a large amount has 

bypassed the rumen8. 

The etiology of the acute hypophosphatemic crisis seen with downer cow syndrome is 

unknown. Certainly phosphate removed from the blood during milk production contributes 

to hypophosphatemia development in the same manner that milk production contributes to 

hypocalcemia development. Hypocalcemia exacerbates the loss of phosphate from the blood 

as it causes parathyroid hormone secretion, which in turn rapidly stimulates the salivary 

glands to secrete more phosphate9. If gastrointestinal motility is impaired, as it is during 

hypocalcemia, reabsorption of the salivary phosphate will be impaired4. This, together with 

the phosphorus demands of colostrum production, can cause the acute declines in plasma 

phosphorus often observed in cows with milk fever. Under most circumstances, correction 

of hypocalcemia re-establishes gastrointestinal motility, so salivary phosphate can be 

reabsorbed, returning plasma phosphorus to normal concentrations within a few hours of 

hypocalcemia treatment. 

In at least some cows classified as downer cows, the correction of hypocalcemia is not 

followed by correction of hypophosphatemia5. Why this occurs is unknown. Perhaps 
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insoluble phosphate complexes are formed during the period of gut stasis, or there may not 

be enough 1,25-dihydroxy vitamin D produced to allow efficient phosphorus absorption10. 

Perhaps gastrointestinal motility is not returning in these cows. If the latter is true, then 

treatment with the sodium monophosphate drench may not be effective in all downer cows. 

Though this generally has not been our experience, it may be necessary to intravenously 

inject sodium monophosphate to correct the plasma phosphorus concentration and follow the 

injection with an oral sodium phosphate treatment to maintain normal plasma phosphorus 

concentrations. 

The clinical response to intravenous or oral sodium phosphate can be disappointing if 

downer cows are not treated early. This is because muscle and nerve damage secondary to 

prolonged recumbency and the resultant crush syndrome may keep the cow down despite 

corrected plasma phosphorus concentration11. Routine use of phosphate solutions to treat 

milk fever is unwarranted. However, on farms with a history of hypophosphatemia and 

downer cows, practitioners could routinely administer intravenous calcium treatment, wait 

two hours, and then administer intravenous sodium phosphate. Or they could give oral 

sodium phosphate immediately after the intravenous calcium once the swallowing reflexes 

are intact. 
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Figure 1. Mean+SEM plasma phosphorus concentrations(mg/dl) 
in cows receiving 7g phosphorus intravenously supplies by sodium 
phosphate or sodium hypophosphite. Six cows received both 
phosphorus cources on two separate days as treatment for 
hypophospatemia 
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Figure 2. Mean+SEM plasma phosphorus concentrations (mg/dl) 
in cows receiving an oral drench containing 50g phosphorus 
supplied by sodium phosphate or calcium phosphate. Four cows 
received oral sodium phosphate and four received oral calcium 
phosphate 
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CHAPTER 3. THE USE OF SOLANUM MALACOXYLON ON 
PHOSPHORUS (P) UTILIZATION AND ITS ADDITIVE EFFECT 

WITH PHYTASE IN CHICKS FED LOW CALCIUM, LOW P, AND 
VITAMIN D3 ADEQUATE CORN-SOYBEAN DIET 

A paper to be submitted to Poultry Science 

Yahsin J. Cheng, Jesse P. Goff, Jerry L. Sell, S. Gill, E. Pawlak, M. Elena, and 

Ronald L. Horst 

ABSTRACT Two experiments were conducted to demonstrate the effectiveness of Solanum 

malacoxylon (Sg) as an inexpensive source of l,25(OH)2D3 on P utilization in broilers. In 

Experiment 1, three levels of Sg leaf powder :lg, 2.5g, 5g and 15 ug l,25(OH)2D3 were 

added per kilogram to a basal diet. The basal diet contained 0.6%Ca, 0.5% P, and adequate 

vitamin D. Treatments were fed to broilers from 7-day-old to 28-day-old. Growth 

performance and bone ash were used to compare the effect of Sg to synthetic l,25(OH):D-t on 

P utilization. Addition of 5g Sg and 15ug l,25(OH)2D3 increased weight gain, plasma Ca 

and P concentrations, bone ash and bone density. No hypercalcemia was observed in birds in 

the Sg treatments. Bone density and mineral content were normalized by 15ug l,25(OH):Dv 

In experiment 2, the additive effect of Sg with phytase was tested by chicks fed 0.6% Ca. 

0.45% P basal diet. Two levels of Sg (7.5g and 10g), phytase (1200FTU) and the 

combination of Sg (7.5g) and phytase (1200FTU) were added per kilogram basal diet. Sg 

and phytase respectively increased weight gain, plasma Ca and P concentrations, bone ash 

and density as well as bone Ca and P content. The greatest weight gain was shown in the 

phytase treatment. There was no significant difference between the effect of two levels of 

Sg. No additive effect was observed by the Sg/phytase combination when compared with the 

phytase treatment alone. We concluded that Solanum glaucophyllum could be used as an 
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inexpensive source of l,25(OH)2D3 to improve P utilization in poultry industry. The 

hypercalcemic effect induced by low dietary P and Sg was prevented by lowering dietary 

Ca. 

(key words: Solanum glaucophyllum, l,25(OH)2D3 P utilization, broilers) 

INTRODUCTION 

Solanum malacoxylon (Sg)is a calcinogenic plant that induces the disease "enteque seco" in 

cattle and other grazing animals (Worker and Carrillo 1967; Gill, Singh et al. 1976; Puche, 

Faienza et al. 1978). Hypercalcemia, hyperphosphatemia and soft tissue calcification were 

observed in the sick animals, which resembles the lesions of hypervitaminosis D (Capen et 

al. 1966; Done and Dobereiner 1976). The vitamin D-like factor in Solanum leaves was 

identified as a water-soluble l,25(OH)2D3 glycoside (Wasserman et al. 1976; Napoli et al. 

1977; Boiandetal. 1987; Curino et al. 1998). 

Recently, l,25(OH) ,D3 and other vitamin D metabolites were demonstrated to improve P 

utilization in poultry (Edwards 1993; Biehl and Baker 1997; Biehl, Baker et al. 1998). 

Mohammed et al. ( 1991) reported that increasing cholecalciferol in low Ca and low P diet 

restored growth performance and bone development in broilers (Mohammed and Gibney 

1991). The vitamin D metabolites, such as 25(OH)D3, la(OH)D3 and l,25(OH)2D3, also 

increase P retention and decrease P excretion in birds (Edwards 1993; Biehl, Baker et al. 

1995; Biehl and Baker 1997). Among the vitamin D metabolites, la(OH)D3 and 

l,25(OH)2D3 increased bone ash and plasma P in growing chicks better than 25(OH)D3 and 

cholecalciferol (Edwards 1995). In addition, the incidence and severity of Tibial 

Dyschondroplasia (TD) was decreased by supplemental 6ug l,25(OH)2D3 per kilogram diet 

in growing birds (Roberson and Edwards 1996). However, the high cost of synthetic la-

hydroxylated vitamin D compounds limits their application in the poultry industry. Finding a 

cheap source of 1,25(OH) 2D3 would be of benefit to farmers and animal welfare. 
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Microbial phytase has been used as a feed additive to improve phytate-P utilization. 

Simons et al. (1990) reported that adding phytase to low P diet increased dietary P 

availability 60% and decreased excreted fecal P 50% in 3-week-old growing broilers 

(Simons, Versteegh et al. 1990). Mitchell and Edwards (1996) suggested that 1,25(OH) :D3 

and phytase increased phytate P utilization through different mechanisms. Therefore, when 

both phytase and l,25(OH)2D3 were used, the additive effect allowed a reduction of 0.2% of 

diet inorganic P (Mitchell and Edwards 1996). The synergetic effect of phytase and 

1,25(OH) 2D3 not only increased P utilization but also decreased TD incidence in growing 

chicks. 

In the present study, we conducted two experiments to determine (1) the effect of Sg leaf 

powder, as an inexpensive source of l,25(OH)2D3, on P utilization, and (2) the additive effect 

of Sg and phytase in broiler fed low Ca, low P and vitamin D-adequate corn-soybean meal. 

MATERIALS AND METHODS 

General procedure 

One-da> -old broiler chicks were purchased from a commercial hatchery and housed in the 

poulin .science unit in Iowa State University. The temperature was maintained at 34 to 35°C 

during ihe experimental period. All chicks were given normal diet based on the NRC (1994) 

requirement for 7 days. On the 8th day, chicks were weighed and selected to standardize 

weights, followed by random distribution into 36 floor pens. Each treatment was given to 6 

pens of S chicks for the following 21 days. Water and treatment diets were provided ad 

libitum. Feed consumption and weight gain were recorded weekly to determine growth 

performance. At 28 d of age, all chicks were anesthetized with C02:02(50:50). Heparinized 

blood samples were obtained by cardiac puncture and centrifuged at 1735g for 20 minutes. 

The plasma was collected and stored at -20°C until analysis. While under anesthesia, the 

chicks were killed by cervical dislocation. These procedures were approved by the Iowa 

State University Animal Care and Use Committee. 
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The right tibiae from all chicks were dissected and the attached soft tissue was removed 

carefully. Bone density was determined by water displacement as described (Zang and 

Coon 1992). Briefly, each bone was placed in deionized, distilled water DDW) and placed 

into a vacuum chamber overnight to displace air trapped within the bone medullary cavity. 

The hydrated tibiae were then put on the cup of the balance and weighed in air (A). While the 

tibiae was still on the cup the balance was re-zeroed. The tibiae was then moved to the water 

and the immersed bone weight was recorded, which was the buoyancy density (P ) of the 

tibiae. The gravity of the DDW during the weighing condition was p0. Therefore, the 

density of the tibiae (p2) could be calculated using the following formula 

p,= A* p„/P 

It was assumed that water specific gravity is 1.0g/cm3 at room temperature 22°C. 

Following the measurement of bone density, pooled bones from each pen were dried at 

80°C overnight to obtain the dry bone weight. The dried bones were ashed at 600°C for 8 

hours and the ash weight percentage are presented as ash weight per tibiae volume and ash 

weight per dry tibia. Plasma and bone Ca concentrations were determined by atomic 

absorption spectrophotometer (Perkin-Elmer 1965) whereas phosphorus concentrations were 

determined colorimetrically. Plasma l,25(OH)2D3 was measured by RIA after the extraction 

of 1.25(OH):D3 by Sep-Pak chromatography. 

Experiment 1 

The purpose of experiment 1 was to test the effect of Solatium (Sg) leaf powder as the 

substitute of l,25(OH):D-, in improving phosphorus utilization in broiler chicks. Six diets 

were designed. The basal diet contained 0.5% total P (0.21% available P) and 0.6% Ca 

(Table 1 ). Disodium phosphate and calcium phosphate were used to adjust the desired level 

of dietary Ca and P. One gram, 2.5g and 5g of ground dry Sg leaves were added to each kg 

of the basal diet, respectively. One treatment consisted of 15ug l,25(OH)2D3/kg in the basal 

diet and was used to compare the 5g-induced activity to pure l,25(OH)2D3 activity. The 

normal diet contained 1% Ca and 0.7% total P (NRC, 1994) and was used as the positive 

control. 
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Experiment 2 

Experiment 2 was designed to determine if Sg had an additive effect with phytase to 

improve P utilization in the Ca and P deficient diet. The source of Sg leaves in this 

experiment was different from the one used in experiment 1. Rat bioassay showed that the 

l,25(OH)2D3 equivalent in Ig of Sg used in experiment 1 was equal to the activity in 1.5g of 

Sg used in experiment 2 (data did not show). Therefore, in Experiment 2, we used 7.5g of 

Sg/kg (equal to the 5g effect in Experiment 1) as one treatment and increased the Sg dose to 

lOg/kg for another treatment. 

Total P level in the basal diet was decreased to 0.45% (0.16% non-phytate P; Table 1) in 

consideration of the expected phytase effect. The dietary Ca level was maintained at 0.6%. 

In order to compare the maximum effect of phytase1 to S g effect, the levels of phytase used 

in this experiment was 1200 FTU/kg of basal diet. Therefore, the five treatments in 

Experiment 2 were basal diet, basal diet with 7.5g or 10g of Sg leaves/kg, basal diet with 

1200 FTU of phytase/kg and basal diet with the combination of 1200FTU phytase and 7.5g 

Sg leaves, respectively. A diet containing 1% Ca and 0.7% total P was used as the positive 

control. 

Statistical analysis 

All statistics were conducted on the basis of pen means where pen is the experimental unit. 

Treatment means were analyzed by ANOVA and significant differences among treatment 

means were assessed using the Fisher's LSD multiple pair-wise comparison procedure with a 

5% level of probability. 

1 A generous gift from BASF 
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RESULTS 

Experiment 1 

Experiment 1 was designed to see if Sg would improve P utilization as well as synthetic 

l,25(OH)2D3 when 0.6% Ca and 0.5% P com soybean diet was fed to broilers from 1-4 

weeks of age. There were no significant differences in feed efficiency and plasma Ca 

concentrations among dietary treatments (Table 2). Weight gain and plasma P 

concentrations were increased and normalized by 15ug l,25(OH)2D3 and 5g Sg (P<0.01). 

The highest plasma l,25(OH)2D3 concentrations were shown by the treatment of 5g Sg. 

Nevertheless, the elevation of l,25(OH)2D3 by 5g Sg was not significantly different from that 

observed in chicks fed basal and 15ug l,25(OH)2D3 treatments (109.11 vs. 89 and 

76.22pg/ml). 

When compared to basal treatment, Sg treatments significantly increased bone density 

(PcO.Ol) (Table 3). However, tibiae ash and bone calcium concentrations were only 

significantly increased by the 5g dose of Sg when compared to the basal treatment. None of 

the Sg treatments increased bone P concentrations. Addition of 15ug l,25(OH)2D3 increased 

tibiae ash percentage and normalized bone density and bone Ca and P concentrations. 

Experiment 2 

Based on the results from experiment 1, it was expected that dietary concentration of Sg 

greater than 5g/kg would normalize both plasma and bone parameters as compared with 15g 

of synthetic 1,25(OH)2D3/kg. On the other hand, we questioned whether the effect of Sg on 

bone ash could be improved by additional phytase. Therefore, the purpose of the experiment 

was to test the effect of higher doses of Sg and its additive effect with phytase on P 

utilization. In order to avoid hyperphosphatemia induced by the Sg/phytase combination, 

dietary P was reduced from the P used in Experiment 1, 0.5%, to 0.45% whereas the Ca 

levels remained at 0.6%. 
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The ANOVA table showed that the treatment effects of phytase were significant in weight 

gain, bone density, tibiae ash and ash percentage (P<0.01, Table 4). The effect of Sg was 

significant in tibiae ash (P<0.01) whereas a significant interaction of Sg with phytase was 

also observed in tibiae ash (P<0.05). 

There were no significant differences in feed efficiency among treatments (Table 5). 

Compared to the basal treatment and normal treatment, weight gain was significantly 

increased by Sg, phytase and the combination of Sg/phytase (P<0.01). The greatest weight 

gain was observed with phytase treatment alone. Plasma Ca concentration was decreased 

significantly by phytase treatment alone compared to other groups. No hypercalcemia was 

observed by Sg treatments. Low dietary P resulted in low plasma P in the basal treatment 

(4.56mg/dl), which was significantly increased (P<0.01) and normalized by Sg, phytase and 

the combination of Sg/phytase. Compared to the normal treatment, plasma l,25(OH)2D3 was 

significantly increased by basal diet and Sg treatments. Nevertheless, there was no statistical 

difference in plasma l,25(OH)2D3 concentrations between basal and Sg treatments. 

Compared to basal and Sg treatments, phytase and the combination of Sg/phytase 

significantly decreased plasma 1.25(OH)2D-1 (P<0.05) though the value was still higher than 

in the normal treatment birds. 

Compared to the basal treatment, Sg, phytase and the combination of Sg/phytase 

significantly increased tibiae ash, ash percentage and bone density (P<0.05, Table 6). The 

effect of phytase and the combination of Sg/phytase on tibiae ash and ash percentage was 

significantly greater than that of Sg treatments (P<0.05). There were no differences between 

the effect of phytase alone and the combination of Sg/phytase on tibiae ash, ash percentage. 

The concentrations of bone Ca and P were significantly increased (P<0.05), but not 

normalized by Sg, phytase and the combination of Sg/phytase treatments. No differences 

were observed in tibia ash, bone density and bone mineral concentrations between the two 

levels of Sg treatments. Compared to Sg treatment alone, the combination of Sg/phytase 

significantly increased bone Ca concentrations but not bone P concentrations. The difference 

in bone Ca and P concentrations between phytase alone and the combination of Sg/phytase 

was not significant. 



75 

DISCUSSION 

Our experiments focused on the effect of Sg as a substitute of l,25(OH)2D3 to improve 

phosphorus utilization in broilers fed low Ca, low P corn soybean diet. We demonstrated 

that 5g Sg dry leaves per kilogram in Ca and P deficient diet normalized weight gain and 

plasma P concentrations in growing chicks. 

The South America calcinogenic plant. Solatium malacoxylon, is also known as Solatium 

glaucophyllum Dest (Okada et al. 1977). The mechanism of Sg-induced hypercalcemia and 

hyperphosphatemia in animals is due to its vitamin D activity in Ca and P absorption. The 

l,25(OH)2D3 glycosides have been extracted and identified from Sg leaves (Wasserman et al. 

1976; Haussier et al. 1977; Boland et al. 1987; Curino et al. 1998). In rachitic chicks and 

rats, Sg leaves extracts restored intestinal Ca-binding protein synthesis (Wasserman et al. 

1976; Schneider and Schedl 1977), hence increased Ca absorption. P uptake is mediated by 

increasing transcription of DNA to RNA and protein synthesis on the lumenal side (Basudde 

and Humphreys 1975; Haussier et al. 1977; Peterlik and Wasserman 1978). In our studies, 

Sg increased plasma l,25(OH)2D3 (Table 2 and 5), and therefore improved Ca and P 

absorption in broilers. Plasma Ca and P concentrations were restored by Sg treatments when 

chicks were fed low Ca and low P diet (Table 5). 

Ross et al. (1971) reported hypercalcemia in chicks fed 5g Sg for 3 weeks. The 

hypercalcemia they observed should be due to the relatively high dietary Ca used in their 

experiment (Ross et al. 1971). Wasserman (1975) found that the Sg-induced toxicity in 

animals only occurs when the plant is ingested and an adequate dietary Ca and P is intake 

(Wasserman 1975). By decreasing dietary Ca from 1% to 0.6%, the Sg-induced 

hypercalcemia was not observed in our study, suggesting Sg toxicity in elevating plasma 

calcium could be prevented by decreasing dietary Ca. Therefore, Sg could be used as a cheap 

source of 1.25(OH)2D3 to improve both Ca and P utilization in broilers. However, Canas et 

al. (1977) observed the increment of Ca absorption but no effect on P absorption in chicks 

fed Sg methanol extract. This result might be because little l,25(OH)2D3 activity is present in 

methanol extraction of Sg leaves because the l,25(OH)2D3 glycosides are more soluble in 

water than in methanol (Canas et al. 1977). 
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The effect of Sg on bone is controversial. Norrdin et al. (1979) reported the acute effect 

of Sg in growing rats was a stimulation of trabecular bone formation associated with an 

increase in the bone apposition rate on trabecular surfaces (Norrdin et al. 1979). Others 

observed release of hydroxyproline and calcium, and increasing of glucose utilization in the 

medium of mice calvariae cultured with Sg extracts (Lloyd et al. 1975; Simonite and Morris 

1976). Liskova-Kiar et al. (1978) further supported the effect of Sg-induced bone resorption 

by in vivo test. In their study, mobilization of Ca from mouse fetal fibulae cells resulted from 

increasing the population of osteoclasts (Liskova-Kiar and Proschek 1978). The discrepancy 

of Sg on bone formation and resorption was explained by Stem and Ness (1978). These 

authors demonstrated in vitro that Sg had biphasic effects on bone. At low concentration of 

Sg extract (0.3mg/ml) bone resorption was stimulated whereas at high concentrations of Sg 

extract (more than lmg/ml) bone resorption was inhibited. Santos et.al. (1976) reported that 

the Sg-induced osteocytic osteolysis and osteopetrosis disappeared when dietary Ca was 

decreased (Santos et al. 1976), indicating that Sg dosage and dietary Ca are critical in 

determining the response of bone resorption. It is now known that l,25(OH)2D3 increased 

bone mineralization by increasing intestinal absorption of Ca and P, and thus increases 

plasma Ca and P concentrations, which lead to hydroxyapatite formation. Its effect on bone 

resorption, on the other hand, is mediated by stimulation of osteoblast differentiation (Slovic 

et al. 1981; Suda et al. 1990; Suda et al. 1992). In our experiments, tibiae ash and bone 

density were increased by Sg in the Ca and P deficient diet. Compared to the basal treatment, 

Sg leaves significantly increased bone Ca and bone P concentrations (Table 3 and 6), 

indicating the improvement of bone mineralization. 

In our preliminary experiment, 20 ug of synthetic l,25(OH)2D3 /kg increased bone ash and 

bone density to the levels higher than the birds received normal treatment (data did not 

show). Therefore, we suspected lower dose of synthetic l,25(OH)2D3/kg at 15ug would be 

appropriate to normalized growth rate and bone development in the same animal model. 

However, in Experiment 1, 15ug of synthetic l,25(OH)2D3/kg in the 0.5% P and 0.6% Ca 

diet restored growth performance and bone density. Tibiae ash and ash percentage were 

increased but still lower than the normal treatment (1.895 vs. 1.961 and 39.7% vs. 41.9%, 

Table 3). Edward (1993) reported that 5ug l,25(OH)2D3 in low P diet greatly increased bone 
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ash, bone Ca and P, and decreased P rickets retention in a 9-day experimental period 

(Edwards 1993). They also reported the decrease of the incidence and severity of TD by 

additional l,25(OH)2D3 in the same diet (Mitchell and Edwards 1996; Mitchell and Edwards 

1996). Baker and Biehl (1995) demonstrated lOug of l,25(OH)2D3 increased bone ash and 

body weight in 2-week-old of chicks fed 0.63% Ca, 0.43% P (0.1% nonphytate P)(Biehl et al. 

1995). Our results showed that additional 20ug of synthetic l,25(OH)2D3/kg was necessary 

for growing birds from 2-week to 4 week-old of age to normalize growth performance and 

bone development when dietary Ca was 0.6% Ca and dietary P was 0.5% P. the differences 

in the requirement of l,25(OH)2D3 to normalize bone Ca and P might be due to the 

differences in the duration of experimental period. 

The effect of different levels of dietary l,25(OH)2D3 on bone development in broilers at 3 

week of age was tested by Roberson and Edwards. There were no significant differences in 

plasma l,25(OH)2D3 concentrations (267 to 288 pg/ml) when chicks were fed 0, 3, 6, 9ug of 

l,25(OH)2D3, respectively, /kg diet containing 0.8% Ca and 0.77% P (Roberson and 

Edwards 1996). Though the plasma l,25(OH)2D3 concentrations were not significant 

differences, bone ash was significantly increased and the incidence and severity of TD was 

decreased by the treatment of 6ug of l,25(OH)2D3/kg. This suggests supplementation of 

l,25(OH)2D3 improves bone mineralization in fast growing birds. Physiologically, the 

absorbed P was first shown in plasma and used for growth performance. Bone calcification 

is the last criteria to indicate the P status of the individual. In our experiment, plasma 

l,25(OH)2D3 concentrations in 15ug of 1,25(OH)2D3/kg and 5g of Sg/kg treatments were 89 

and 109 pg/ml (Table 2) when chicks fed 0.6% Ca and 0.5% P diet, which was less than half 

of the value from Roberson and Edwards'. Such plasma l,25(OH)2D3 concentrations in our 

experiment significantly increased tibiae ash and Ca and P concentrations in bone when 

compared to the basal treatment, but not normalized the bone criteria when compared to the 

positive control(Table 3). This indicates Sg and l,25(OH)2D3 improve Ca and P utilization 

and therefore, improve bone mineralization when chicks fed low Ca and low P diet. It also 

suggests that the bone parameters could be restored when higher dose of Sg is given by 

increasing higher plasma l,25(OH)2D3, which in turn, increases more P absorption and offer 

P for bone development. However, in Experiment 2 bone and blood parameters were not 
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significantly different from chicks fed 7.5g and lOg of Sg (Table 6). One possibility was 

the available P in the basal diet, 0.16%, was too low and therefore restricted the effect of 

Sg. It indicates the elevation of Sg dosage is not the major determining factor to normalize 

bone development in chick fed 0.45% P and 0.6% Ca diet. 

The phytase effect in Experiment 2 was consistent with other reports that phytase increases 

bone ash and growth performance in chicks fed P deficient diets (Nelson et al. 1971; Qian et 

al. 1997). In table 5 and 6, 1200FTU phytase decreased plasma l,25(OH)2D3 and increased 

weight gain, plasma P, tibiae ash and bone mineral in a greater manner than Sg treatments, 

suggesting phytase is superior to Sg on P utilization especially in high phytate-P diet. 

Sebastian (1996) reported the phytase concentrations to optimal growth performance and 

mineral utilization in 3 week old chicks fed 0.5% P and 0.6% Ca was at 600 FTU (Sebastian 

et al. 1996). When total P was decreased to 0.45% the maximum growth performance was 

observed at 1000 to 1500FTU/kg. Our data showed that 1200U phytase induced the greatest 

growth performance in broiler chicks (Table 5), which would have overwhelmed the possible 

additive effect with Sg. Hence, the combination of phytase and Sg treatment did not result in 

significant differences on growth performance and bone mineralization when it was 

compared to phytase treatment alone. Nevertheless, the synergistic effect of vitamin D 

metabolites with phytase was reported (Edwards 1993; Roberson and Edwards 1994; Biehl et 

al. 1995; Mitchell and Edwards 1996; Mitchell and Edwards 1996; Qian etal. 1997). Baker 

and Biehl (1995) observed an additive effect of 1200 FTU phytase and lOug l,25(OH)2D3 in 

increasing bone ash when chicks were fed 0.63% Ca and 0.43% P (Biehl et al. 1995). 

Mitchell and Edwards (1996a and 1996b) reported 5ug l,25(OH)2D3 with 600FTU phytase in 

increasing body weight, bone ash and decreasing rickets and TD incidence, as well as 

decreasing fecal P excretion when chicks were fed 0.45% P and 0.83% Ca (Mitchell and 

Edwards 1996; Mitchell and Edwards 1996). In our experiment, the only significant 

interaction of Sg and phytase was in increasing tibiae ash (Table 4). Paired comparison of 

our data also indicated that the combination of Sg and phytase had significantly higher 

weight gain, tibiae ash and bone Ca concentrations than those by Sg treatment alone (Table 5 

and 6). Bone P concentrations were not different between Sg and the combination of Sg and 

phytase. It indicates that when Sg was used to improve dietary P utilization in broilers, the 
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presence of phytase would further increase growth performance. As far as the interaction 

of phytase and Sg on bone, it is mainly in increasing bone Ca rather than bone P 

concentrations. 

CONCLUSION 

The effect of phytase and l,25(OH)2D3 in growing broilers promises a good future for 

improving P utilization and bone development, which in turn, will decrease P pollution and 

TD incidence. 

In our studies we demonstrated Solarium could be used as a less expensive source of 

l,25(OH)2D3 in 0.6% Ca and 0.5% (or 0.45%) P to improve P utilization. Though tibiae ash 

was slightly lower than the normal treatment, adequate phytase should be able to compensate 

the disadvantage. 



80 

REFERENCES 

Basudde, C. D. and D. J. Humphreys (1975). "The effect of the active principle of Solatium 

tnalacoxylon on rabbits and the inhibition of its action by actinomycin D." Calcif 

Tissue Res 18(2): 133-9. 

Biehl, R. B. and D. H. Baker (1997). "Utilization of phytate and nonphytate phosphorus in 

chicks as affected by source and amount of vitamin D3." J Anim Sci 75: 2986-2993. 

Biehl, R R„ D. H. Baker, et al. (1995). "1 alpha-Hydroxylated cholecalciferol compounds 

act addilively with microbial phytase to improve phosphorus, zinc and manganese 

utilization in chicks fed soy-based diets." J Nutr 125: 2407-16. 

Biehl, R R., D. H. Baker, et al. (1998). "Activity of various hydroxylated vitamin D3 analogs 

for improving phosphorus utilisation in chicks receiving diets adequate in vitamin 

D3." Br Poult Sci 39(3): 408-12. 

Boland, R. L., M. I. Skliar, et al. (1987). "Isolation of vitamin D3 metabolites from Solarium 

tnalacoxylon leaf extracts incubated with ruminai fluid." Planta Med 53(2): 161-4. 

Canas, F. M., O. E. Ortiz, et al. (1977). "Effects of Solatium malacoxylon extract on rachitic 

chicks. Comparative study with vitamin D,." Calcif Tissue Res 23(3): 297-301. 

Capen. C. C., C. R. Cole, et al. (1966). "The pathology of hypervitaminosis D in cattle." 

Pathol Vet 3(4): 350-78. 

Curino, A., M. Skliar, et al. (1998). "Identification of 7-dehydrocholesterol, vitamin D3, 

25(OH)-vitamin D3 and 1,25(OH)2-vitamin D3 in Solanum glaucophyllum cultures 

grown in absence of light." Biochim Biophvs Acta 1425(3): 485-92. 

Done, S. H. and J. a. T. Dobereiner, C.H. (1976). "Systemic connective tissue calcification in 

cattle poisoned by Solanum malacoxylon; a histological study." Br Vet J 132(1): 28-

38. 

Edwards, J. H. M. (1993). "Dietary 1,25-Dihydroxycholecalciferol supplementation increases 

natural phytate phosphorus utilization in chicken." J Nutri 123: 567-577. 

Edwards, J. H. M (1995). "Efficacy of several vitamin D compounds in increasing phytate 

phosphorus utilization in chickens." Poult Sci 74(Suppl): 107. 



81 

Gill, B. S., M. Singh, et al. (1976). "Enzootic calcinosis in sheep: clinical signs and 

pathology." Am J Vet Res 37(5): 545-52. 

Haussier, M. R., M. R. Hughes, et al. (1977). "1,25-Di hydroxy vitamin D3: mode of action in 

intestine and parathyroid glands, assay in humans and isolation of its glycoside from 

Solanum malacoxylon." Calcif Tissue Res 22 Suppl: 1-18. 

Liskova-Kiar, M. and L. Proschek (1978). "Influence of partially purified extracts of 

Solanum malacoxylon on bone resorption in organ culture." Calcif Tiss Res 26(1): 

39-45. 

Lloyd, W„ H. Wells, et al. (1975). "Stimulation of bone resorption in organ culture by salt-

free extracts of Solanum glaucophyllum." Endocr Res Commun 2(2): 159-66. 

Mitchell, R. D. and H. M. Edwards, Jr. (1996). "Additive effects of 1,25-

dihydroxycholecalciferol and phytase on phytate phosphorus utilization and related 

parameters in broiler chickens." Poult Sci 75(1): 111-9. 

Mitchell, R. D. and H. M. Edwards, Jr. (1996). "Effects of phytase and 1,25-

dihydroxycholecalciferol on phytate utilization and the quantitative requirement for 

calcium and phosphorus in young broiler chickens." Poult Sci 75(1): 95-110. 

Mohammed. A. and M. J. a. t. L. T. Gibney, T.G. (1991). "The effect of dietary levels of 

inorganic phosphorus, calcium and cholecalciferol on the digestibility of phytate-P by 

the chick." Bri J Nutr 66: 251-259. 

Napoli. J. L.. L. E. Reeve, et al. (1977). "Solanum glaucophyllum as source of 1,25-

dihydroxy vitamin D,." J Biol Chem 252(8): 2580-3. 

Nelson. T. S.. T. R. Shieh, et al. (1971). "Effect of supplemental phytase on the utilization of 

phytate phosphorus by chicks." J Nutr 101: 1289-1294. 

Norrdin. R. W.. C. S. L. de Barros, et al. (1979). "Acute effects of Solanum malacoxylon on 

bone formation rates in growing rats." Calcif Tissue Int 28(3): 239-243. 

Okada, K. A., B. J. Carrillo. et al. (1977). "Solanum malacoxylon Sendtner: A toxic plant in 

Argentina." Economic Botany 31(April-June): 225-236. 

Peterlik, M. and R. H. Wasserman (1978). "Stimulatory effect of 1,25-

dihydroxycholecalciferol-like substances from Solanum malacoxylon and Cestrum 

diurnum on phosphate transport in chick jejunum." J Nutr 108(10): 1673-1679. 



82 

Puche, R. C., H. Faienza, et al. (1978). "On the nature of arterial and lung calcifications 

induced in cattle by Solanum glaucophyllum." Calcif Tissue Res 26( 1 ): 61-4. 

Qian, H., E. T. Kornegay, et al. (1997). "Utilization of phytate phosphorus and calcium as 

influenced by microbial phytase, cholecalciferol, and the calcium: total phosphorus 

ratio in broiler diets." Poult Sci 76(1): 37-46. 

Roberson, K. D. and H. M. Edwards, Jr. (1994). "Effects of 1,25-dihydroxycholecalciferol 

and phytase on zinc utilization in broiler chicks." Poult Sci 73(8): 1312-26. 

Roberson, K. D. and H. M. Edwards, Jr. (1996). "Effect of dietary 1,25-

dihydroxycholecalciferol level on broiler performance." Poult Sci 75(1): 90-4. 

Ross, E., C. F. Simpson, et al. (1971). "Toxicity of Solanum sodomaeum and Solanum 

malacoxylon to chicks." Poult Sci 50((3)): 870-873. 

Santos, M. N., V. A. Nunes, et al. (1976). "Solanum malacoxylon toxicity: inhibition of bone 

resorption." Cornell Vet 66((4)): 566-589. 

Schneider, L. E. and H. P. Schedl (1977). "Effects of Solanum malacoxylon on duodenal 

calcium binding protein in the diabetic rat." Endocrinology 100((4)): 928-933. 

Sebastian, S., S. P. Touchbum, et al. (1996). "Efficacy of supplemental microbial phytase at 

different dietary calcium levels on growth performance and mineral utilization of 

broiler chickens." Poult Sci 75: 1516-1523. 

Simonite, J. P. and K. M. a. C. Morris, J. C (1976). "Induction of bone resorption in vitro by 

an extract of Solanum malacoxylon." J Endocrinol 68((3)): I8p-19p. 

Slovic, D. M., J. S. Adams, et al. (1981). "Deficient production of 1,25-dihydroxyvitamin D, 

in elderly osteoporotic patient." N Engl J Med 305: 372-374. 

Suda, T., T. Shinki, et al. (1990). "The role of vitamin D in bone and intestinal cell 

differentiation." Annu Rev Nutr 10: 195-211. 

Suda, T., N. Takahashi, et al. (1992). "Role of vitamin D in bone resorption." J Cell Biochem 

49(1): 53-8. 

Wasserman, R. H. (1975). "Active vitamin D-like substances in Solanum malacoxylon and 

other calcinogenic plants." Nutr Rev 33(1): 1-5. 



83 

Wasserman, R. H., R. A. Corradino, et al. (1976). "Studies on the 1 alpha, 25-

dihydroxycholecalciferol-like activity in a calcinogenic plant. Cesirwn diurnum, in 

the chick." J Nutr 106((4)): 457-465. 

Wasserman, R. H , J. D. Henion, et al. (1976). "Calcinogenic factor in Solanum malacoxylon: 

evidence that it is 1,25-dihydroxyvitamin D3-glvcoside." Science 194(4267): 853-

855. 

Worker, N. A. and B. J. Carrillo (1967). "Enteque seco", calcification and wasting in grazing 

animals in the Argentine." Nature 215(96): 72-4. 

Zang, B. and C. N. Coon (1992). Nutrition institute on minerals. Chapter 7: Practical 

applications. National feed ingredient association, Chicago, EL. 



84 

Table 1. Composition (as-fed basis) of basal and normal com-soybean meal diet in 

Experiment 1 and 2 

Ingredients Basal for Basal for Normal 
Experiment 1 (%) Experiment 2 (%) 

Corn 52.63 51.22 52.63 
Soybean meal 39.56 41.53 38.7 
Soy oil 5.15 5.15 5.15 
Limestone 1.22 0.99 1.22 
Mineral premix 1 0.3 0.3 0.3 
Vitamin premix2 0.3 0.3 0.3 
Salt 0.2 0.2 0.2 
DL-Methionine(98%) 0.14 0.14 0.14 
Disodium phosphate 0.5 0.19 -

Calcium phosphate - - 1.36 

Calculated composition 
ME. Kcal/kg 3200 3200 3200 
Crude Protein 23 23 23 
Calcium 0.6 0.6 1 
Total phosphorus 0.5 0.45 0.7 
Non-phvtate phosphorus 0.23 0.18 0.43 

1 Mineral premix provided the following(per kilogram of diet): Mn, 70mg(MnS04 H20): Zn, 40mg(ZnS04 
H20); Ft. 37m»iFeS04 7H20); Cu, 6mg(CuS04 5H20); Se, 0.15mg(Na2Se03); NaCl, 2.6g (Iodized). 
2 Vitamin premix provided the following(per kilogram of diet): vitamin A(retinyl acetate), 8065 IU: 
chokv.ikiicu'1. 15S0 IU: menadione sodium bissulfite. 4mg: vitamin E 15 IU: vitamin B12 I6ug: ribolfavm. 
7.Smv. naniuthcmv avid 12.8mg: folic acid. 1.62mg; niacin. 75mg: biotin. 270ug: choline chloride. 509mg. 
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Table 2. Effect of Solanum(Sg) and 1,25-dihydroxycholecalciferol on growth performance 
and plasma parameters on broilers fed 0.6% Ca, 0.5% P and vitamin D3 adequate com 
soybean diets in Experiment 1 ' 
Diet Weight GainrFeed Plasma 

Gain (g) g/kg Ca(mg/dl) P(mg/dl) l,25(OH)3D, 
(pg/ml) 

Basal 1213±23u 663±83 10.23±0.22 7.11±0.06J 89.0±19.6J 

Basal+Sg lg/kg 1260±18J 677±33 10.35±0.15 7.26±0.15a 

Basal+Sg 2.5g/kg I213±18a 696±19 10.44±0.19 7.72±0.24b 

Basal+Sg 5g/kg 1286±16b 679±27 lO.26±O.2l 8.08±0.24bc 109.1±8.6a 

Basal 
+15 ugl,25(OH)2D3/kg 1298±16b 714±25 ÎO.27+O.Î6 8.2810.2' 76.2±5.6ab 

Normal 1278±14b 668±lOO lO.27±O.O9 8.01±0.09c 52.l±3.7b 

Means in columns with different superscript letters are different (P< 0.05) 
1 data are means±SEM of 6 pens of 8 chicks during the period 8 to 28 day post-hatching; average initial weight 
was 156g/chick 
2 data were means of 4 pens/treatment 
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Table 3. Effect of Solamim(Sg) and 1,25-dihydroxycholecalciferol on bone mineralization in 
broilers fed 0.6% Ca, 0.5% total P and vitamin D3 adequate corn soybean diets in 
Experiment 1 ' 
Diet Tibial ash Bone Mineral content 

g % Density Ca P 

Basal 
Basal+Sg Ig/kg 
Basal+Sg 2.5g/kg 
Basal+Sg 5g/kg 
Basal+ 15ug 
l,25(OH)2D3/kg 

1.61 ±0.03" 
1.69±0.02a 

1.66±0.03a 

1.75+0.03" 

1.86±0.03c 

38.5±0.3ab 

37.7±0.2a 

38.910.6"° 
38.4±0.5ab 

39.7±0.5C 

-g/cm3-
1.139±0.003a 

1.14810.001" 
1.148±0.002" 
1.14910.002" 

1.16310.002e 

- mmole/cm3-
1.35+0.17a 0.8410.15ab 

1.34i0.20a 0.8210.18a 

1.3710.2 lab 0.8310.13a" 
1.41+0.13" 0.8610.12" 

1.5310.22e 0.9310.11e 

Normal 1.96±0.04d 41.9±0.2d 1.1621.003e 1.5510.12e 0.9410.16e 

Means in columns with different superscript letters are different (P< 0.05) 
1 data are meanstSEM of 6 pens of 8 chicks during the period 8 to 28 day posthatching; average initial weight 
was 156g/chick 
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Table 4. Analysis of variance summary of the effect of Solanum and Phytase in broilers fed 
0.6% Ca, 0.45% P and vitamin D3 adequate corn soybean diet in Experiment 2' 

Weight gain 
"S" 

Bone density 
-g/cm3-

Tibiae ash 
S % 

df Probability— 
Treatment 3 <0.01 <0.01 <0.01 <0.01 
Solanum 1 0.24 0.06 <0.01 0.66 
Phytase 1 <0.01 <0.01 <0.01 <0.01 
Solanum* Phytase 1 0.09 0.09 0.02 0.11 
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Table 5. Effect of Solanum(Sg) and phytase on growth performance and plasma parameters 
in broilers fed 0.6% Ca, 0.45% total P and vitamin D3 adequate com soybean diet in 
Experiment 2 1 

Diet Weight Gain:Feed Plasma 

Gain (g) g/kg Ca (mg/dl) P (mg/dl) l,25(OH)2D3 

(pg/ml) 

Basal 984±16a 688±13 9.23±0.23ab 4.56±0.26a 157.3±7.r 
Basal+Sg 7.5g/kg 1045±31b 697±16 9.51±0.21a 6.89±0.26b 176.1±14.0a 

Basal+Sg lOg/kg 1046±23b 702±15 9.20±0.14J 7.02±0.29b 169.7±8.2a 

Basal+phytase 
1200 FTU/kg 1136±llc 727±7 8.85±0.13b 7.06±0.15b 127.7±6.5C 

Basal+Sg 7.5g 
+phytase 1200 FTU 1124± 16= 727±6 9.35±0.15a 7.46±O.22b 143.0±10.7ac 

Normal 1033±20a 685±24 9.04±0.12a 7.54±0.30b 80.7±4.4b 

Means in columns with different superscript letters are different (P< 0.05) 
1 data are means±SEM of 6 pens of 8 chicks during the period 8 to 28 day post-hatching; the average initial 
weight was 133 g/chick 
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Table 6. Effect of Solanum(Sg) and phytase on bone mineralization performance in broilers 
fed 0.6% Ca, 0.45% total P and vitamin D3 adequate com soybean diets in Experiment 2 ' 
Diet Tibial ash Bone Mineral concentrations 

S % Density Ca P 
-gw/cm3- -mmole/cm3-

Basal 1.02±0.03a 36.8±0.4- 1.117±0.007u 1.01 ±0.02" 0.68±0.02a 

Basal+Sg 7.5g/kg 1.19±0.03b 37.9±0.2ab 1.132±0.003b 1.18±0.02b O.78±O.Olb 

Basal+Sg lOg/kg 1.25±0.05b 38.7±0.5b 1.128±0.002ab 1.19±0.02b 0.80±0.01b 

Basal+phytase 
1200FTUZkg 1.35±0.02c 40.8±0.8C 1.136±0.002b 1.24±0.0lbc O.8l±O.O2b 

Basal+Sg7.5g 
+phytase 1200FTU 1.38±0.02c 40.4±0.3C 1.137±0.001b 1.29±0..02c 0.80±0.03b 

Normal 1.49±0.03d 42.8±0.4d 1.158±0.006c 1.39±0.04d 0.92±0.02c 

Means in columns with different superscript letters are different (P< 0.01) 
' data are means±SEM of 6 pens of 8 chicks during the period 8 to 28 day post-hatching: the average initial 
weight was 133 g/chick 
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CHAPTER 4. THE EFFECT OF SOLANUM GLAUCOPHYLLUM ON 
PHOSPHORUS UTILIZATION IN LACTATING COWS 

A paper to be submitted to the Journal of Dairy Science 

Yahsin J. Cheng, Jesse P. Goff, Ronald L. Horst 

ABSTRACT 

Ten pri mi parous Holstein cows were used to demonstrate the effect of Solanum 

glaucophyllun(Sg) on phorphorus(P) utilization. Four cows received positive control diet. 

The positive control diet contained 0.7% Ca and 0.37% P. The remaining 6 cows were fed 

basal diet containing 0.6% Ca and 0.27% P. After two weeks of feed adjustment, 2g Sg per 

cow per day was bolus administered to 3 cows fed the basal diet. Solanum administration 

continued for 7 days and its effect on fecal P excretion was compared to that of cows fed 

basal diet or positive control diet. Body weight and milk yield were not significantly 

different among treatments. Fecal P concentration was significantly decreased by reducing 

dietary P. Compared to the positive control, total fecal P was decreased 49% in cows fed 

basal diet and 60% in cows with Sg bolus. Apparent P digestibility was increased 60% by 

decreasing dietary P to 0.27% and increased 90% by Sg administration when compared to 

apparent P digestibility of cows on the positive control diet. Plasma l,25(OH)2D3, Ca and P 

concentrations were significantly increased by Sg bolus, suggesting the stimulation of 

intestinal P and Ca absorption. Bone resorption was inhibited by Sg in cows fed basal diet. 

We concluded that Solanum improves P utilization by increasing intestinal P absorption. 

(Key words: dairy cows, fecal phosphorus excretion, Solanum glaucophyllum) 
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Abbreviation key: DM= dry matter, DMI= dry matter intake, P= phosphorus, Sg= 

Solanum glcaucophyllum, CP= crude protein, ADF= acid detergent fiber, NDF= neutral 

detergent fiber 

INTRODUCTION 

In ruminants, dietary P absorption is directly related to P requirement. Once the P supply 

reaches the requirement, higher P intake would decrease absorption rate [1]. However, the P 

requirement for dairy cows is not well established because there are differences in dietary P 

availability and difficulties in estimating endogenous P losses [2]. Hence, farmers are prone 

to give higher P than the NRC recommendation to maintain reproductive performance and 

high milk yield. High P intake results in high fecal P output, which raises concerns of P 

pollution from dairy farms. Therefore, in order to decrease fecal P the practical way is to 

decrease dietary P. 

Reducing dietary P too much (to 0.24%) decreased body weights, feed consumption and 

lowered inorganic serum P concentration in lactating cows [3], Most reports suggest that 

prolonged feeding of P at 0.28% to 0.31% is sufficient to meet the P requirement for dairy 

cows producing 7500kg to 9000kg milk per lactation without influencing reproductive 

performance [4, 5], Wu and Satter (2001) reported that feeding 0.31% P for 2 years does 

decrease bone P content even though the breaking strength was not changed [6], This 

suggests that negative P balance results in bone resorption when dietary P is decreased to 

reduce fecal P excretion, even though reproductive performance is not affected. 

Decreasing P intake might be sufficient to reduce fecal P. Increasing active intestinal P 

absorption by supplemental vitamin D metabolites could be an alternative way. The P 

regulating hormone, l,25(OH)2D3 stimulates active P transport, and therefore increases 

intestinal P absorption [7]. However, in ruminants, plasma l,25(OH)2D3 would not be 

stimulated by the level of dietary P recommended for decreasing fecal P output. Our 

hypothesis is that by giving exogenous l,25(OH)2D3 the active P absorption mechanisms can 

be increased, which in turn, would decrease fecal P excretion and increase apparent P 
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digestibility. In addition, the effect of 1,25(OH)2D3 on bone mineralization may avoid 

possible bone P mobilization when cows are fed a low P diet. We conducted a pilot 

experiment to determine whether Solanum glaucophyllum, a plant containing l,25(OH)2D3 

glycosides in its leaves [8] [9] [10], could be used as a source of l,25(OH)2D3 to improve P 

utilization, and thus further decrease P excretion when dairy cattle are fed 0.6% Ca and 

0.27% P. 

MATERIALS AND METHODS 

Animal and diet 

Ten pri mi parous Holstein cows in mid lactation (15-19kg milk/day) were used in the 

experiment. Animals were housed in a free-stall bam and randomly divided into 3 groups. 

Two groups of 3 cows each were assigned to basal diet which contained 0.6% Ca and 0.27% 

P on a dry matter (DM) basis. The energy and all nutrients except Ca and P met the NRC 

(2000) requirements for cows at 550 kg body weight producing 23kg milk per day during 

mid-lactating period. The remaining 4 cows were given 0.7% Ca and 0.37% P (NRC 2000 

requirement) as a positive control group. Dicalcium phosphate was added to the basal diet to 

obtain desired Ca and P concentrations in the positive control diet. Individual cows in each 

group were the experimental units. All animals were allowed free access to water. Basal and 

positive control diets were made every two days and sampled for DM, CP, ADF, NDF, as 

well as Ca and P analysis. Composition of diets is presented in Table 1. 

Experimental design 

The experimental period consisted of 3 weeks: 2 weeks of diet adaptation followed by one 

week of sample collection. Body weights were recorded one day before and at the end of the 

3 week trial. Before the experiment, cows were fed an alfalfa hay- com silage based diet. In 

order to achieve a low P diet, the alfalfa hay was replaced by beet pulp. Com silage 
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comprised a large part of the diet. Wheat straw was added to provide NDF to avoid rumen 

acidosis. The daily feed intake from each group decreased slightly during the first week of 

diet adjustment. Therefore, to ensure that most cows consumed all of the experimental diet, 

the dry matter intake was restricted to 13.5kg per cow per day. The positive control group 

received diet containing 0.7% Ca and 0.37% P through the 3 weeks. The other two groups 

received basal diet containing 0.6% Ca and 0.27% P during the experimental period. The 

experimental diet was divided into two part and given at 9:00am and 3:00pm. Ytterbium 

(Yb) was used as an indigestible marker to estimate daily fecal output. The Yb was first 

mixed with beet pulp which was added to the diets at concentration of 40mg/kg of DM 

(40ppm) as prepared by Wu and Salter [4]. The analysis of Yb concentration in the feed 

samples indicated only 30ppm was actually in the diets. During the first 2 weeks of feed 

adjustment, blood samples were taken at 3 day intervals. On the 3rd week, two grams of Sg 

leaf powder per cow per day was bolus administered to one group of 3 cows fed the basal 

diet. Solanum administration continued for 7 days and samples including blood, urine and 

feces were collected every day. Feed refusal and milk production were recorded daily. 

Sample collection and analysis 

Blood samples were collected at 1:00pm via jugular vein into heparinized tubes and 

centrifuged for 30 minutes shortly after bleeding. Urine samples were collected at the same 

time and mixed with 50ul of concentrated HC1 before storage to prevent crystallization of 

calcium salt and creatinine degradation. Cows were milked at 7:00am and 2:00pm daily. 

Milk samples were collected after each milking. Plasma, urine and milk samples from each 

collection were stored at -20°C until analysis. Fecal samples were collected from the rectum 

at 1:00pm and 7:00pm. Thirty grams of manure from each collection were pooled per cow 

per day and dried at 90°C overnight. After calculating the dry matter of the feces, samples 

were ground into powder by electrical mill passing through 1mm screen. A 0.25g aliquot of 

fecal powder was wet ashed in 5ml concentrated HN03 and boiled at 60°C overnight. The 

Yb concentration in fecal sample was determined by plasma emission spectroscopy [11]. 
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One gram of the ground fecal powder was ashed at 550°C for 4 hours for Ca and P 

determination. 

Plasma l,25(OH)2D3, Ca and P are used as indicators for the l,25(OH)2D3 activity in Sg. 

Plasma free hydroxyproline is an indicator of bone resorption because hydroxyproline is 

released into plasma when type I bone collagen is degraded. The percentage of urinary Ca 

and P clearance was calculated and used as a reference for renal function and mineral 

excretion. Calcium concentration was determined by atomic absorption spectrophotometer 

(Perkin-Elmer Model 2380), whereas P, creatinine and hydroxyproline were determined by 

colorimetric methods. Plasma l,25(OH)2D3 was measured by RIA after the extraction of 

l,25(OH)2D3 by Sep-Pak chromatography. 

Statistics 

Phosphorus balance was determined by the differences between P intake and milk P, fecal P 

and urinary P clearance calculated from each treatment. Treatment means were compared by 

analysis of variance and significant differences among treatments were assessed using the 

Fisher's LSD multiple pair-wise comparison procedure with a 5% level of probability. 

RESULTS 

Diet analysis and feed intake 

Originally, we planned to have the basal diet at 0.55% Ca and 0.27% P in order to prevent 

possible hypercalcemia that might be induced by Sg treatment. We estimated the diet 

mineral composition based on the NRC (2000) feed tables. However, the actual feed analysis 

showed 0.62% Ca and 0.27% P in the basal diet. The unexpected high Ca content in the 

basal diet resulted from an unexpectedly high Ca concentration in the com silage used during 

the experiment. The Ca content in our com silage was 0.35%, which was 0.07% higher than 

that listed on the NRC(2000) feed ingredient table (0.28%). Therefore, the Ca content in 
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positive control diet was also increased to 0.71% instead of 0.66% (Table 1). In addition, 

the acid detergent fiber (ADF) and neutral detergent fiber (NDF) in the feeds were higher 

than what we calculated. It could be due to the amount of straw and beet pulp in the feeds. 

Dry matter intake among groups was not significantly different. Most cows consumed all 

13.5 kg of diet per day during the 3-week experimental period, except one cow fed the 

positive control diet and one fed the basal diet (assigned in the Sg treatment group later), 

resulting in a small variation in the feed intake in these 2 groups (Table 2). The treatment 

effect was not significant for body weight and milk yield (P> 0.05). However, cows in the 

positive control group had slightly lower body weight than the other two groups before the 

trial, which became significantly lower than those on the basal and Sg groups. Before the 

trial, milk yield was 18.6. 19.1 and 17.4kg per day in the positive control, basal and Sg 

treatment, respectively. One week after the beginning of the experiment, while cows were 

still in the feed adjusting period, one cow assigned in the Sg group was found to have mastitis 

and received antibiotics. Therefore, the mean milk yield from the Sg group was decreased to 

15.8kg. 

P balance 

Duilx P intake was 49.7, 36.5 and 36g in the positive control, basal and Sg treatments, 

respective!) (Table 3). Mean fecal output on dry matter base was 5kg in positive control and 

basal groups, respectively, and 4.2kg in Sg treatment. The difference in fecal output was not 

significant among treatments. Decreasing dietary P from 0.37% to 0.27% significantly 

reduced fecal P concentration from 6.00g/kg to 3.41g/kg(P<0.01). Fecal P concentration was 

3.l5g/kg in Sg treatment, which was not significantly different from basal group but also 

significantly lower than that in positive control. Compared to positive control, daily fecal P 

excretion was significantly decreased by basal diet and Sg treatment. Daily fecal P excretion 

was decreased 49% in cows fed basal diet and decreased 60% in cows fed Sg treatment when 

compared to positive control cow fecal P excretion (P<0.01). Compared to the basal diet, 

daily fecal P was reduced 22% by the presence of Sg. However, the reduction was not 

significant. Milk P concentration was not significantly different among treatments, being 
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0.78, 0.85 and 0.83g/kg of milk in positive control, basal group and Sg treatment, 

respectively. Urinary P clearance was higher in cows fed 0.37% P diet than in cows fed 

0.27% P diet, but the difference was not significant. Since the glomerular filtration rate 

(GFR) and the daily urine volume was not measured, twenty liter per cow per day was 

assumed to be the minimum urine volume [12]. Hence, the urinary P excretion was 

calculated as 0.5g/d for estimating P balance since the highest urinary P concentration was 

less than 0.015gZL. Variance between the assumed and the true P excreted in urine should 

not greatly influence the P balance because of the low urinary P concentration. Phosphorus 

balance in the positive control, basal and Sg treatments were 2.19g, 3.14g and 8.92g, 

respectively. The treatment effects on P balance were not significant due to the small cow 

numbers in each group (n=3) and relatively big variation in individual. Nevertheless, 

compared to the positive control and basal group, Sg increased 6.73g and 5.7g of P retention. 

Decreasing P intake significantly increased apparent digestibility of dietary P (P<0.01). 

Compared to cows fed 0.37% P, apparent P digestibility was increased 60% by decreasing 

dietary P to 0.27% and 90% by Sg in the 0.27% P diet. The presence of Sg in the basal diet 

further increased 18.7% of P digestibility than without Sg. 

Ca balance 

Daily Ca intake was 95.4g, 83.9g, 82.4g in the control, basal and Sg treatment, respectively. 

The highest fecal Ca concentration and total fecal Ca were observed in the basal group at 

19.01g/kg and 97.37g/d (Table 4). Compared to control and basal treatments, fecal Ca 

concentration was significantly lower in the Sg treatment (P<0.05). However, the effect of 

Sg on fecal Ca excretion was not statistically significant. No treatment effect was observed 

in the milk Ca concentration and total milk Ca. Total milk Ca was lower in the Sg group was 

resulted by the lower daily milk yield. Percentage of urinary Ca clearance was 0.33, 0.18 and 

3.91 in control, basal and Sg treatments. Urinary Ca clearance was significantly higher in Sg 

treatment than the other groups (P<0.01). Most cows had urinary Ca concentration below 

0.02g/L in the normal and basal groups. Therefore, 0.5g/d was used as the Ca lost in the 

urine for calculating Ca balance when 20L was used as an estimation of urine volume. The 
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urinary Ca excretion in the Sg group was 2.72g/day because the average urinary Ca 

concentration in this group was 0.136g/L. Positive Ca balance was observed in Sg group at 

7.75g/day whereas -18.68g and -30.05g/day of Ca balance was shown in the control and 

basal treatment. 

Plasma parameters 

Plasma l,25(OH)2D3 was not increased by basal diet during the experimental period (Figure 

1, a and b). Plasma l,25(OH)2D3 was significantly increased after 24 hours of Sg bolus, 

reached peak at 270.7pg/ml(mean) 4 days later, followed by a decrease on the 5th day and 

maintained at 180 pg/ml for the rest 3 days when the cows were continuously bolus (Figure 

1, a and c). 

No significant changes were observed in the plasma P concentration by cows fed basal diet 

during the 3-week experimental period (Figure 2, a and c). Plasma P in the Sg treatment was 

not different from the basal treatment during the first 2 weeks of diet adjustment. Significant 

elevation of plasma P appeared 3 day after Sg administration. Solatium treatment stimulated 

a gradual increment of plasma P and reached a plateau at 7mg/dl until the end of the 

experiment (Figure 3, a and b). 

Plasma Ca concentration was not increased significantly during the first 2 weeks of 

experimental period until 3 days after Sg administration. The peak plasma Ca was at 11.8 

mg/dl on the 6th day after daily Sg bolus. Hypercalcemia sustained the rest of the 

experimental period (Figure 2, a and c). On the other hand, plasma Ca concentration was not 

changed in the basal group during the whole 3-week experimental period (Figure 2, a and b). 

Plasma free hydroxyproline was 4 and 3.6lug/ml in the basal and Sg treatments after 2 

weeks of diet-adjusting period. Mean plasma free hydroxyproline was further increased 

during the 3rU week trial in the basal treatment (Figure 4, a) due to the reaction from one cow 

(Figure 4, b). The administration of Sg tended to decrease plasma hydroxyproline the 3rd 

week experimental period (Figure 4, c). 

Low dietary P did not significantly increase plasma l,25(OH)2D3 in basal group (Table 5). 

Compared to control and basal treatments, means of plasma 1,25(OH)2D3 and P 
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concentrations were significantly increased by Sg treatment (P<0.05). Plasma Ca was 

significantly increased by basal treatment and Sg treatment (P<0.01). Though the basal 

group had higher plasma free hydroxyproline during the 3rd week it was not significantly 

different from that of Sg treatment. 

DISCUSSION 

The purpose of the study was to determine whether Solatium could serve as a source of 

l,25(OH)2D3 to increase P utilization and decrease P excretion in lactating cows. 

In order to ensure cows consumed all assigned diets we restricted feed intake to 13.5kg DM 

during the 3-week experimental period. According to NRC (2000) for lactating cows 

weighing 550kg and producing 25kg milk/day during their 6* month of lactation, the 

predicted dry matter intake is 18.9kg. Therefore, the actual daily dry matter intake in our 

experiment was 28% less than that of NRC predicted. Nevertheless, the net energy intake, 

net protein intake and mineral contents in the 13.5kg were supposed to maintain cows 

producing 22.8kg milk/day without negative energy or protein balance. Assuming the P 

requirement for lactating cows was based on the sum of inevitable loss of P at 1.2g/kg DMI 

[12] and the total milk P at 0.9g/kg(NRC,2000), the minimum P intake to cows in our 

experiment should be 33g/d regardless the urinary P excretion. The P intake in basal and Sg 

treatments was 36.5g/d and 36g/d, which was theoretically above their daily requirement. 

The P in positive control (0.37%) was then 51% above their daily needs. In fact, the milk 

yield of our cows did not exceed 22kg milk/day before the trial. Hence, feed restriction and 

dietary P concentration should not result in decreasing milk yield and/or body weights. At 

the end of the trial, body weight was increased in all groups. Compared to the milk yield 

before the experiment, a slightly reduction was shown in all treatments. Mean milk P 

concentration in our experiment was 0.82g/kg, which is a little bit lower than the NRC 

published value at 0.9g/kg. Florar et al. (1982) investigated the changes of inorganic P in 

milk of lactating Holstein cows and reported that milk P concentration was affected by month 

of year and month of calving but not dietary P. Milk P concentration was lower during 
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summer months and declined in later lactation with reduced milk yields [13]. Our 

experiment was conducted in August when cows were during the 6 and 7 months of 

lactation. Thus, the reduction in milk P concentration and milk yield could be due to the 

season and length of lactation rather than treatment effects. 

Means of fecal output in the 3 groups were consistent at about 5kg/day, which makes the 

fecal P concentration a determining factor for daily P excretion and a reliable indicator for 

net apparent P absorption. There was significant treatment effect on fecal P concentration. 

Fecal P concentration was decreased 29% when dietary P was decreased from 0.37% to 

0.27%. Though there was no significant difference between basal and Sg treatment, Solanum 

tended to decrease 8% more of fecal P concentration than that of in basal treatment. It 

indicates that net P absorption was increased when P intake was decreased and Sg further 

increased net P absorption when it is added with low P diet. 

Treatment effect on fecal P excretion was significant. Cows fed 0.37% P excreted the 

highest fecal P at 33.14g/day among 3 treatments. Therefore, the apparent P digestibility was 

33%, the lowest among all treatments. High dietary P resulted in high fecal P and low 

apparent P digestibility in positive control, suggesting the higher the P intake the less the % P 

absorbed in the small intestine, and the more the P excreted in feces. This is supported by 

Challa et al. (1989) that higher P intake would decrease absorption rate when the P supply 

reaches the requirement [1], Wu et al. (2000) reported similar P digestibility in cows fed 

0.4% P. In their study, when dietary P was increased from 0.31% to 0.4%, the apparent 

digestibility was decreased from 45% to 34% in high milk yield cows during the 23th week 

of lactation [4], This indicates that 0.37% P in our experiment and 0.4% P in Wu's 

experiment are above the P requirement for lactating cows. Hence, fecal P excretion was 

increased by higher P intake. When compared to the basal treatment, the apparent P 

digestibility was further increased 19% by Sg. However, the reduction induced by Sg was 

not significant even there xvas big differences between the two value (53% vs 63%). It might 

be due to the small number in each group (n=3) and variance among individuals. 

Nevertheless, it could be concluded that Sg tends to decrease fecal P excretion and increase P 

digestibility via increasing P absorption. 
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The sources of fecal P could be exogenous and endogenous. The major contribution of 

endogenous P is from saliva. Large amount of salivary P is secreted into the rumen and 

mixed with digesta before it flows to small intestine [1], Riad et al. (1987) reported that 

l,25(OH) :D3 decreased salivary P concentration and secretion even though it induced 

hyperphosphatemia and hypercalcemia [14]. Because Sg increased plasma l,25(OH) 2D3 it is 

possible that salivary P secretion was reduced, and therefore, decreased endogenous P lost in 

feces. However, we did not measure salivary P to demonstrate the influence of Sg on 

endogenous P loss. 

Spiekers et al. ( 1993) reported that fecal P could be divided into 3 parts: the unavailable 

dietary P that was undigested and unabsorbed, the inevitable P excreting during normal 

physiological conditions. The latter included microbial debris containing P, salivary P and P 

sloughed from gut tissue. The third part was the regulated P, which is the amount of P 

absorbed beyond the tissue requirements [12]. The regulated P depends on the physiological 

events and vitamin D status of the animals. The major form of unavailable P in feed is 

phytate-P. Unlike monogastric animals, rumen microbes hydrolyze 98% of dietary phytate-P 

even when large quantities of feeds and significant amounts of grain are consumed. 

Therefore, phytate-P should be considered as available to lactating cows when rations to 

meet their P requirement [15, 16]. In this case, dietary P availability should be counted close 

to 100%. Because salivary P is changed with the DMI, the inevitable P loss is also 

determined by DMI. Decreasing dietary P would decrease the excretion of inevitable P and 

regulated P, and thus decrease the excretion of total P in feces. 

Because the DMI and dietary P concentration was the same in basal and Sg treatments, the 

inevitable P loss was supposed to be the same. We calculated the P requirement in our 

experimental cows was 33.39g for the basal group and 31.62g for the Sg group based on the 

sum of inevitable P and milk P excretion [12]. Assuming dietary P is almost 100% available, 

calculation of the regulated P by subtracting P requirement from the P intake would be 3.1 Ig 

and 4.38g for the basal and Sg groups. Thus, the mean of the regulated P for cows fed 0.27% 

P is 3.74g. When Sg was added in the basal diet, the fecal P was decreased 3.8g/day 

compared to the basal group. That is, the amount of P decreased by 2g Sg (3.8g) is almost 

identical to the amount of regulated P (3.74g), suggesting Sg, as an exogenous l,25(OH) ,D3 
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further enhances the absorption of regulated P to the minimum and decreases fecal P 

excretion to the least. Since the calculation in P requirement is based on the assumption 

proposed by Spiekers' (1993) our data support his conclusion that 1.2g/kg DMI should be 

used for estimation of inevitable P loss for dairy cows [12]. 

One may argue that by decreasing P intake to the P requirement at 33.39g would have the 

same results as adding Sg. However, when P intake was decreased to 33.39g in our 

experiment the dietary P would be 24%. Call et al. (1987) reported the reduction of feed 

consumption and decreased body weight was shown when cows fed 0.24% P [3] whereas 

Valk et al. (1999) proposed that 0.28% P was sufficient to meet the P requirement of dairy 

cows with 9000kg/year milk yield [5]. The question here is if it is appropriate to give the P 

intake at the level only meet their P requirement in order to minimize the fecal P output. 

Though plasma P concentration was in the normal range, data from Spiekers ( 1993) 

experiment showed negative P balance when P supply only met the P requirement, indicating 

bone resorption would have to occur to maintain normal plasma P concentration [12]. 

We did not observed hypocalcemia and hypophosphatemia in cows fed 0.6% Ca and 0.27% 

P basal diet during the first two weeks of feed adjustment (Figure 2 and 3). Mean plasma P 

in the basal treatment was slightly decreased from 6mg/dl to 5.6mg/dl but still in the normal 

range for late lactation cows (4.1-8.7mg/dl)(Table 4)[17]. Wu et al. (2001) reported 

decreased bone P in cows fed 0.31% P for 2 years even though plasma P was not decreased 

significantly [6], Plasma P concentration reflects actual P supply in ruminants. However it 

may not indicate the real P status in the animal because plasma P is well controlled by 

parathyroid hormone, l,25(OH)2D3and calcitonin [18]. Bone resorption occurs in a few days 

to maintain normal plasma P concentration when dietary P is below the requirement [19]. In 

our experiment, cows fed 0.6% Ca and 0.27% P diet had normal plasma Ca and P 

concentrations but free plasma hydroxyproline was increased after 2 weeks diet adjustment 

period (data not shown). Though the differences in plasma hydroxyproline between the pre-

and after treatment was not significant it indicates a trend toward bone resorption. The slow 

elevation of plasma hydroxyproline in cows fed 0.27% P diet was inhibited when Sg 

treatment was added to the basal diet (Figure 4, a and c). Solatium increased plasma 

l,25(OH)2D3 (Figure 1, a and c), which in turn, stimulated active intestinal Ca and P 
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absorption and increased plasma Ca and P concentrations, hence increased Ca and P 

deposition in bone. Meanwhile, the hypercalcemia induced by Sg stimulated calcitonin 

secretion, which blocked bone resorption [20]. Goff et al. (1986) demonstrated that 

administration of l,25(OH)2D3 did not increase urinary hydroxyproline excretion rate and 

plasma hydroxyproline concentration. However, these authors observed severe reduction in 

glomerular filtration rate (GFR) and urine specific gravity when 400ug of synthetic 

l,25(OH)2D3 was given. They concluded that l,25(OH)2D3 does not induce bone resorption 

in nonlactating Jersey cows but results in the impairment of renal function at high dose of 

this compound [21]. In our experiment we did not measure the GFR and urine specific 

gravity. The percentage of urinary Ca clearance was elevated from 0.33 to 3.19 by the Sg 

treatment when compared to the positive control (Table 5). If the renal function was 

impaired and the high Ca clearance was due to the decreased GFR, the urinary P clearance 

should be also increased. However, the urinary P clearance was not different among 

treatments, indicating the renal function was normal and the high Ca excretion was due to 

hyperclacemia in the Sg treatment. 

Dooley et al. (2001) reported that supplemental excess vitamin D had no effect on P 

absorption in dairy cattle fed 0.31% P when compared to cows fed 0.31% P alone [22]. The 

possible reason is a large amount of the vitamin D in their experiment was degraded by the 

rumen microbes before it could be absorbed [23, 24]. The advantage of oral administration 

of l,25(OH)2D3 is the compound may have local effects on small intestine to stimulate 

intestinal Ca and P absorption [25] when it forms lipid-mixed micelles and is taken up by the 

intestinal mucosa cells. Solanum leaves contain l,25(OH)2D3 glycosides. The glycosidic 

bonds could be hydrolyzed by the microbial enzyme before it is absorbed [9, 26]. Although 

it may also be subject to degradation by rumen microbes, the elevation of plasma 

l,25(OH)2D3 in Sg treated cows suggests that some l,25(OH)2D3 was absorbed and therefore, 

increased P utilization in dairy cattle. 
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CONCLUSION 

Our data support the premise that decreasing dietary P significantly increases apparent P 

digestibility and reduces fecal P excretion, which may greatly contribute to the prevention of 

P pollution. Decreasing dietary P from 0.37% to 0.27% in mid-lactating cows increased 

apparent P digestibility from 33% to 53%. Fecal P excreted by cows fed 0.27% P was 52% 

of the P excreted by cows fed 0.37% P. Solatium leaves enhance active intestinal P 

absorption and therefore, decrease fecal P excretion and increase P digestibility in lactating 

cows. Another benefit is decreasing the possibility of bone Ca and P mobilization as it 

increases Ca and P balance. With 2g of Sg/kg in 0.27% P diet fecal P was reduced to 40% of 

the P excreted by cows fed 0.37% P. The effect of Sg on improving P utilization would be 

especially appreciated by cows during early lactation when their feed intake was decreased 

and negative P balance was occurred. Future research should focus on the concentration of 

dietary Ca in the 0.27% P diet needed to prevent the hypercalcemic effect induced by Sg in 

our experiment. 
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Table 1. Ingredient and nutrient composition of diets(DM basis) 

Item Basal diet Positive control 
% % 

Ingredient 
Corn silage 22.36 21.41 
Com grain, cracked, dry 17.19 16.9 
Beet pulp, dried 21.76 21.41 
Wheat straw 12.99 14.53 
Soybean, meal, solv, 46% CP 14.93 14.69 
Soybean, meal, expellers 4.23 4.17 
Calcium soaps of fatty acids 1.44 1.43 
Vegetable oil 1.44 1.42 
Salts 0.47 0.44 
Vitamin premix 0.47 0.44 
Magnesium oxide 0.24 0.24 
Magnesium sulfate(7H20) 0.62 0.6 
Sodium bicarbonate 1.16 1.14 
Calcium phosphate - 0.5 

Calculated chemical composition 
CP 18.4 18.1 
ADF 19.7 20.1 
NDF 34 33.5 
Ca 0.56 0.66 
P 0.27 0.37 
Mg 0.38 0.38 

Analyzed chemical composition 
CP 16 15.23 
ADF 30.23 31.29 
NDF 45.20 48.39 
Ca 0.62 0.71 
P 0.27 0.37 
Mg 0.42 0.39 

ADF = acid detergent fiber 
NDF = neutral detergent fiber 
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Table 2. Body weights, daily intake, and milk yield of cows with different treatments before 
and after experiment* 
Treatment Positive 

control 
Basal Basal+2g Sg P value 

Number of cows 
DMI, kg/d 

4 
13.4±0.1 

3 
13.5±0.0 

3 
13.3±0.2 0.58 

Body weight, kg 
Before experiment 
After experiment 

506.8±14.6J 

515.6±12.3a 

556.2±17.9b 

562.4±11.5b 
545.1±10.3ab 

556.6±12.7b 

0.09 
0.05 

Milk yield, kg/d 
Before experiment 
After experiment 

18.6±0.9 
17.8±0.9 

19.1±0.8 
18.7±0.7 

17.4±1.7 
15.8±1.7 

0.59 
0.29 

"Data are expressed as mean±SEM. 
Means with different superscripts indicate significant difference (P<0.05) 
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Table 3. Phosphorus balance in dairy cows fed different treatments* 
Treatment Positive Basal Basal+2g Sg P value 

control 
Number of cows 
P intake, g/d 

4 
49.7 

3 
36.5 

3 
36 

Fecal output, kg/d 
P in feces, g/d 

P in feces, g/kg DM 

5.0±0.3 
33.14±2.47a 

6.00±0.27a 

5.O+O.7 
17.01±1.81b 

3.41 ±0.09" 

4.2+O.3 
13.27±0.74b 

3.15±0.04b 

0.38 
<0.01 
<0.01 

P in milk, g/d 
Milk P, g/kg 

13.87±0.59 
0.78±0.02 

Î5.87+O.99 
O.85±O.O4 

13.30±1.98 
O.83+O.O3 

0.36 
0.31 

W Urinary P clearance" 1.30±0.8 O.O7+O.O4 0.11 ±0.06 0.26 

P balance, g/d"* 
P digestibility, % 

2.19±2.5 
33.25+4.94-

3.14±1.69 
53.33±4.98b 

8.92±2.60 
63.33±1.76b 

0.18 
<0.01 

"Data are expressed as mean±SEM. 
of urinary P clearance = 100 {[creatinine] inphlsmux[P] murine/ [creatinine] inurincx[P] inplasma} 

"" P balance = P intake - [P in feces + P in milk + P in urine]. Urinary P less than 0.015g/L 
was counted as 0.5g/day in the balance table; as the daily urine volume was not determined. 
There ma\ be a deviation between P balance and P retention. 
Means with different superscripts indicate significant difference (P<0.05) 
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Table 4. Calcium balance in dairy cows fed different treatments* 
Treatment Positive 

control 
Basal Basal+2g Sg P value 

Number of cows 4 3 3 
Ca intake, g/d 95.4 83.9 82.7 

Ca in feces, g/d 92.80±10.22 97.37120.44 54.3215 0.1 
Ca in feces, g/kg DM 17.75±1.32a 19.0111.42a 12.8310.41" 0.02 

Ca in milk, g/d 20.44±0.95 21.4310.52 17.9112.30 0.27 
Milk Ca, g/kg 1.15±0.02 1.1410.01 1.1310.02 0.74 

% urinary Ca clearance" 0.33±0.09a 0.1810.09' 3.9110.70" <0.01 

Ca balance, g/d -18.34 -35.4 7.75 

"Data are expressed as mean±SEM. 
"Urinary Ca less than 0.02g/day is counted as 0.5g/d in the basal and normal treatments 
whereas 2.72g/d was used in the Sg treatment for the Ca balance 
Means with different superscripts indicate significant difference (P<0.05) 
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Table 5. Mean value of treatment effects on Plasma l,25(OH)2D„ Ca, P and hydroxyproline' 
Treatment Positive Basal Basal+2g Sg P value 

control 

Number of cows 4 3 3 

Plasma l,25(OH);D3, pg/ml 43.1±3.3a 

Plasma Ca, mg/dl 9.66±0.02a 

Plasma P, mg/dl 5.26±0.27a 

Plasma hydroxyproline, ug/ml 3.31±0.16 

79.79±5.83a 

9.38±0.06b 

5.46±0.24a 

4.79±0.76 

185.67±17.88b 

10.83±0.04c 

6.58±0.30b 

3.28±0.29 

<0.01 
<0.01 

0.04 
0.16 

"Data are presented as mean±SEM. 
Means with different superscripts indicate significant difference (P<0.05) 
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Figure 1. The effect of Solanum(Sg) on plasma l,25(OH)2D3; (a) mean curves of 
basal and Sg treatment with the positive control as reference(dot line), (b) individual 
curves for basal treatment, and (c) indivual curves for Sg treatment. Sg was given at 
day zero. 
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Figure 2. The effect of Solanum on plasma P; (a) mean curves of basal and Sg 
treatment with the positive control as reference(dot line), (b) individual curves 
for basal treatment, and (c) individual curves for Sg treatment. Sg was given at 
day zero. 
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Figure 3. The effect of Solanum on plasma Ca; (a) mean curves of basal and 
Sg treatment with the positive control as reference(dot line), (b) individual 
curves for basal treatment, and (c) individual curves for Sg treatment. Sg was 
given at day zero. 
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Figure 4. The effect of Solanum on plasma free hydroxyproline; (a) mean 
curves of basal and Sg treatment with the positive control as reference(dot 
line), (b) individual curves for basal treatment, and (c) individual curves 
for Sg treatment. Sg was given at the day zero. 
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CHAPTER 5. GENERAL CONCLUSIONS 

Hypophosphatemic cows should be treated with phosphate solution to prevent muscle 

and nerve damage 

Phosphorus (P) utilization in animals depends on P availability in the diet and P 

homeostasis of the individual. Phosphate (H2P04
2", HP04

2') is the form of phosphorus that is 

absorbed by the digestive tract and regulated by the P homeostatic mechanisms. In chapter 

two, we point out that current treatment for hypophosphatemia in dairy cattle is not 

appropriate because the P is in the phosphite (PCX 3", P03 
3' ), rather than the phosphate form, 

in the commercial solution. Our data demonstrated that when P was intravenously 

administered, plasma inorganic P was increased by sodium phosphate solution but not by 

sodium phosphite solution in hypophosphatemic cows. We also demonstrated that the 

sodium phosphate salt was more effectively absorbed in the small intestine than the calcium 

phosphate salt when the two were compared as sources of oral P. It is important to note that 

phosphate would react with calcium ions and precipitate as calcium phosphate under 

physiological pH (7.4) and block the vessels when they are given intravenously at the same 

time. Therefore, to cows suffering from milk fever and having a history of 

hypophosphatemia, sodium phosphate should be administered intravenously 2 to 3 hours 

after the Ca is administered. 

Solatium glaucopliyllum could be used as an inexpensive source of l,25(OH)2D3 to 

improve P utilization in broilers and dairy cattle 

In chapter three and four, we reported on the use of Solanum glaucopliyllum as an 

inexpensive source of l,25(OH)2D3 to improve P utilization and hence decrease fecal P 

excretion in broilers and dairy cattle. Solanum glaucopliyllum (Sg) is a calcinogenic plant 

native to South America countries (Boland 1988). Its leaves contain water-soluble 

l,25(OH)2D3 glycosides that can be absorbed and utilized as a source of 1,25(OH)2D3 when it 

is taken up by animals (Wasserman et al. 1976). l,25(OH)2D3 increases vitamin D-
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dependent Ca and P absorption in the small intestine, thereby increasing plasma Ca and P 

concentrations. Toxicity induced by Sg, including hypercalcemia, hyperphosphatemia, 

weight loss and soft tissue calcification, has been reported in cattle (Capen et al. 1966). 

Similar clinical signs were also observed in other animals with experimentally induced 

toxicity (Ross et al. 1971; Woodard et al. 1993). Santos et al. (1976) demonstrated that the 

Sg-induced toxicity could be eliminated by decreasing dietary Ca (Santos et al. 1976). Thus, 

in our experiments, we tried to improve P utilization in broilers and dairy cattle by using Sg 

as an inexpensive source of l,25(OH)2D3 and eliminate its hypercalcemic effect by 

modifying the levels of dietary Ca and P. 

Different factors result in high fecal P in birds and cattle. In broilers, the low level of 

intestinal phytase is insufficient for digestion of high dietary phytate-P, contributing to high 

fecal P excretion (Nelson 1967; Nelson and Ferrara 1968; Nelson 1976). In corn and 

soybean meal, phytate-P accounts for 60-70% of total P, and this phytate-P easily chelates 

minerals such as Ca and Zn ions in the diet to form calcium phytate complexes. Because the 

calcium phytate complex is insoluble, Ca absorption is decreases. Meanwhile, chelation of 

Ca and phytate reduces the available space on phytate molecules for phytase attachment, thus 

decreasing phytate hydrolysis (Sebastian et al. 1998). l,25(OH)2D3 regulates Ca and P 

homeostasis via increasing active intestinal Ca and P absorption. Under normal physiological 

condition, synthesis of l,25(OH)2D3 is stimulated by parathyroid hormone or by low dietary 

Ca and P (Gray 1981; Gray and Garthwaite 1985) (Hove 1984). Administration of 

exogenous l,25(OH)2D3 to birds would increase dietary Ca and P absorption, allowing 

phytase of either endogenous or exogenous origin to break down phytate bonds and release 

phosphate for absorption, thereby decreasing fecal P. In chapter three, we demonstrated that 

5g Solanum or 15ug l,25(OH)2D3 per kg diet increased weight gain, plasma Ca and P, bone 

ash and bone density in broilers fed a low Ca(0.6%) and low P(0.5%) corn-soybean diet. 

Bone density and mineral content were normalized by 15ug l,25(OH)2D3. The Sg effect on 

hypercalcemia was prevented by lowering dietary Ca. However, our data did not support an 

additive effect of Sg and phytase in combination on P utilization. This could be due to the 

high concentration of phytase used in the study. Nevertheless, the effect of l,25(OH)2D3 on 

bone development and its synergetic effect with phytase on P utilization in growing chicks 
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has been demonstrated in many studies (Mohammed and Gibney 1991; Edwards 1993; 

Biehl et al. 1995). The effect of Solanum on improving P absorption makes it a candidate 

for decreasing fecal P excretion in the poultry industry. Additional studies should focus on 

the additive effect of various levels of phytase combined with 5g Solanum to minimize fecal 

P excretion by poultry. 

In dairy cattle, fecal P excretion increases when dietary P intake increases (Braithwaite 

1984; Braithwaite 1985). High fecal P results from excessive dietary P given to maintain 

reproductive performance and milk yield (Sansinena et al. 1999). Such a diet also contains 

high phytate-P. Nevertheless, the enzyme activity produced by rumen microbes hydrolyzes 

dietary phytate, which suggests that phytate-P is 90-98% available to ruminants (Morse and 

Head 1992a). Therefore, decreasing dietary P to reduce fecal P excretion becomes a practical 

way of avoiding P pollution from dairy farms. Although research showed that decreasing 

dietary P from 0.41% (NRC requirement) to 0.31% in lactating cows did not decrease 

reproductive performance, bone P was decreased after a 2 year experimental trial (Wu et al. 

2000; Wu et al. 2001). This indicates that decreasing dietary P may be at the expense of 

bone P mobilization. 

Alternatively, increasing the P absorption rate may increase P digestibility and decrease 

fecal P excretion. P is absorbed through two mechanisms: vitamin D-dependent active 

transport and passive diffusion. In ruminants, large dry matter (DM) intake results in short 

retention time. Continuous digestion, which is the nature of ruminant digestion, leads to a 

constant high flow rate of digesta in the gastrointestinal tract (GIT) (Church 1988). It is not 

likely that passive P absorption could be increased when digesta flow is fast and retention 

time is short, along with decreased dietary P. Supplying exogenous l,25(OH)2D3 with 

lowered dietary P to lactating cows would enhance active P absorption, thus decreasing fecal 

P excretion. In chapter four, we reported on results with decreased dietary P, from 0.37% to 

0.27%, and compared fecal P output with use of the basal diet and of the Solanum/basal diet. 

Without Sg, the 0.27% P diet was associated with a 48% decrease of fecal P, whereas with 

Sg, fecal P was decreased 60% when cows fed 0.27% P were compared to cows fed 0.37% P. 

Fecal P could be divided into 3 categories: the unavailable P, the inevitable P and the 

regulatory P. The regulatory P is controlled by the homeostatic mechanisms to the levels that 
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actual available P supply exceeds the P requirement (Spiekers et al. 1993). In our study, 

the amount by which fecal P was decreased by Sg treatment equaled the amount of P 

calculated as regulated P. In other words, Sg as an exogenous l,25(OH)2D3 source may 

enhance absorption of dietary P maximally, so that less P would be excreted in the feces. 

Such an effect also resulted in more positive Ca and P balance, which inhibited bone 

resorption in our experiment. We demonstrated that when dietary P is decreased for the 

purpose of decreasing fecal P output, Sg could be used as a source of exogenous l,25(OH)2D3 

to improve intestinal P absorption and further decrease fecal P excretion in lactating cows. In 

our experiment, 0.6% dietary Ca along with Sg resulted in hypercalcemia. Future research 

should focus on determining the appropriate combination of dietary Ca and P with 2g 

Solanum/kg diet to avoid the hypercalcemic effect. 
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APPENDIX. CALCULATION OF FECAL OUTPUT BY USING 
YTTERBIUM AS INDIGESTABLE MARKER IN COW FEEDS 

Ytterbium (Yb) intake = Yb output in feces 

Therefore, Yb intake (mg/day of DM) = [Yb] in feces (ppm of DM) x Fecal output 

Fecal output (kg) = Yb intake/ [Yb] in feces 

Raw numbers of Yb intake, [Yb] in feces and Fecal output from each cows 
Treatment/cow Yb intake (mg/day)" [Yb] in feces (ppm)" Fecal output (kg) 

Positive control 
Cow 2 405.9 88.4 4.59 
Cow 6 394.2 75.3 5.23 
Cow 8 405.9 64.9 5.85 
Cow 14 405.9 90.5 4.49 

Mean 403 79.8 5.04 
Basal 
Cow 4 405.9 87.9 4.62 
Cou 7 405.9 64.3 6.31 
Cow 13 405.9 98 4.14 

Mean 405.9 83.4 5.02 
Basal + .S> 
Cou 1 405.9 85.1 4.77 
Cou 5 388.2 95.3 4.07 
Cow 15 405.9 106 3.83 

Mean 400 95.5 4.22 
* Yb intake = [Yb] in feeds x daily feed intake. [Yb] in feeds was 30ppm (on dry matter 
base) and daily feed intake was 13.5kg on dry matter base. Cows with decreased Yb intake 
was due to feed refusal 
" [Yb] in fecal sample was based on dry matter base and determined by plasma emission 
spectrophotometer 
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